Configuring and Managing a Red Hat Cluster

Red Hat Cluster for Red Hat Enterprise Linux 5
Configuring and Managing a Red Hat Cluster: Red Hat Cluster for Red Hat Enterprise Linux 5
Copyright © 2007 Red Hat, Inc.

Configuring and Managing a Red Hat Cluster describes the configuration and management of Red Hat cluster systems for Red Hat Enterprise Linux 5. It does not include information about Red Hat Linux Virtual Servers (LVS). Information about installing and configuring LVS is in a separate document.

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

Documentation-Deployment

Copyright © 2007 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E
Table of Contents

Introduction ... vi

1. Document Conventions ... vii

2. Feedback .. viii

1. Red Hat Cluster Configuration and Management Overview 1
 1. Configuration Basics .. 1
 1.1. Setting Up Hardware ... 1
 1.2. Installing Red Hat Cluster software ... 2
 1.3. Configuring Red Hat Cluster Software ... 2

2. Conga .. 4

3. system-config-cluster Cluster Administration GUI .. 7
 3.1. Cluster Configuration Tool ... 7
 3.2. Cluster Status Tool .. 9

4. Command Line Administration Tools .. 10

5. Configuration Considerations ... 11

2. Configuring Red Hat Cluster With Conga ... 13
 1. Configuration Tasks ... 13
 2. Starting luci and ricci .. 13
 3. Creating A Cluster .. 15
 4. Global Cluster Properties ... 15
 5. Configuring Fence Devices ... 17
 5.1. Creating a Shared Fence Device .. 18
 5.2. Modifying or Deleting a Fence Device 19
 6. Configuring Cluster Members ... 20
 6.1. Initially Configuring Members .. 20
 6.2. Adding a Member to a Running Cluster 21
 6.3. Deleting a Member from a Cluster .. 22
 7. Configuring a Failover Domain .. 23
 7.1. Adding a Failover Domain .. 24
 7.2. Modifying a Failover Domain .. 25
 8. Adding Cluster Resources ... 26
 9. Adding a Cluster Service to the Cluster ... 29
 10. Configuring Cluster Storage ... 30

3. Managing Red Hat Cluster With Conga ... 32
 1. Starting, Stopping, and Deleting Clusters .. 32
 2. Managing Cluster Nodes .. 33
 3. Managing High-Availability Services .. 34
 4. Diagnosing and Correcting Problems in a Cluster 35

4. Configuring Red Hat Cluster With system-config-cluster 36
 1. Configuration Tasks .. 36
 2. Starting the Cluster Configuration Tool ... 37
 3. Naming The Cluster .. 39
 4. Configuring Fence Devices .. 40
 5. Adding and Deleting Members ... 41
 5.1. Adding a Member to a Cluster ... 41
 5.2. Adding a Member to a Running Cluster 43
Introduction

This document provides information about installing, configuring and managing Red Hat Cluster components. Red Hat Cluster components are part of Red Hat Cluster Suite and allow you to connect a group of computers (called nodes or members) to work together as a cluster. This document does not include information about installing, configuring, and managing Linux Virtual Server (LVS) software. Information about that is in a separate document.

The audience of this document should have advanced working knowledge of Red Hat Enterprise Linux and understand the concepts of clusters, storage, and server computing.

This document is organized as follows:

• Chapter 1, Red Hat Cluster Configuration and Management Overview
• Chapter 2, Configuring Red Hat Cluster With Conga
• Chapter 3, Managing Red Hat Cluster With Conga
• Chapter 4, Configuring Red Hat Cluster With system-config-cluster
• Chapter 5, Managing Red Hat Cluster With system-config-cluster
• Appendix A, Example of Setting Up Apache HTTP Server
• Appendix B, Fence Device Parameters
• Appendix C, Upgrading A Red Hat Cluster from RHEL 4 to RHEL 5

For more information about Red Hat Enterprise Linux 5, refer to the following resources:

• Red Hat Enterprise Linux Installation Guide — Provides information regarding installation of Red Hat Enterprise Linux 5.

• Red Hat Enterprise Linux Deployment Guide — Provides information regarding the deployment, configuration and administration of Red Hat Enterprise Linux 5.

For more information about Red Hat Cluster Suite for Red Hat Enterprise Linux 5, refer to the following resources:

• Red Hat Cluster Suite Overview — Provides a high level overview of the Red Hat Cluster Suite.

• LVM Administrator’s Guide: Configuration and Administration — Provides a description of the Logical Volume Manager (LVM), including information on running LVM in a clustered environment.

• Global File System: Configuration and Administration — Provides information about installing, configuring, and maintaining Red Hat GFS (Red Hat Global File System).

• Using GNBD with Global File System — Provides an overview on using Global Network Block Device (GNBD) with Red Hat GFS.
1. Document Conventions

Certain words in this manual are represented in different fonts, styles, and weights. This highlighting indicates that the word is part of a specific category. The categories include the following:

Courier font

Courier font represents commands, file names and paths, and prompts.

When shown as below, it indicates computer output:

<table>
<thead>
<tr>
<th>Desktop</th>
<th>about.html</th>
<th>logs</th>
<th>paulwesterberg.png</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mail</td>
<td>backupfiles</td>
<td>mail</td>
<td>reports</td>
</tr>
</tbody>
</table>

Bold Courier font

Bold Courier font represents text that you are to type, such as: `service jonas start`

If you have to run a command as root, the root prompt (#) precedes the command:

```
# gconf-tool-2
```

Italic Courier font

Italic Courier font represents a variable, such as an installation directory: `<install_dir/bin/`

Bold font

Bold font represents application programs and text found on a graphical interface.

When shown like this: `OK`, it indicates a button on a graphical application interface.

Additionally, the manual uses different strategies to draw your attention to pieces of information. In order of how critical the information is to you, these items are marked as follows:

Note

A note is typically information that you need to understand the behavior of the system.
Tip
A tip is typically an alternative way of performing a task.

Important
Important information is necessary, but possibly unexpected, such as a configuration change that will not persist after a reboot.

Caution
A caution indicates an act that would violate your support agreement, such as recompiling the kernel.

Warning
A warning indicates potential data loss, as may happen when tuning hardware for maximum performance.

2. Feedback
If you spot a typo, or if you have thought of a way to make this manual better, we would love to hear from you. Please submit a report in Bugzilla (http://bugzilla.redhat.com/bugzilla/) against the component `rh-cs`.

Be sure to mention the manual's identifier:

`rh-cs(EN)-5 (2007-01-23T09:05)`

By mentioning this manual's identifier, we know exactly which version of the guide you have.

If you have a suggestion for improving the documentation, try to be as specific as possible. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.
Chapter 1. Red Hat Cluster Configuration and Management Overview

Red Hat Cluster allows you to connect a group of computers (called nodes or members) to work together as a cluster. You can use Red Hat Cluster to suit your clustering needs (for example, setting up a cluster for sharing files on a GFS file system or setting up service failover).

1. Configuration Basics

To set up a cluster, you must connect the nodes to certain cluster hardware and configure the nodes into the cluster environment. This chapter provides an overview of cluster configuration and management, and tools available for configuring and managing a Red Hat Cluster.

Configuring and managing a Red Hat Cluster consists of the following basic steps:

1. Setting up hardware. Refer to Section 1.1, “Setting Up Hardware”.
2. Installing Red Hat Cluster software. Refer to Section 1.2, “Installing Red Hat Cluster software”.
3. Configuring Red Hat Cluster Software. Refer to Section 1.3, “Configuring Red Hat Cluster Software”.

1.1. Setting Up Hardware

Setting up hardware consists of connecting cluster nodes to other hardware required to run a Red Hat Cluster. The amount and type of hardware varies according to the purpose and availability requirements of the cluster. Typically, an enterprise-level cluster requires the following type of hardware (refer to Figure 1.1, “Red Hat Cluster Hardware Overview”). For considerations about hardware and other cluster configuration concerns, refer to Section 5, “Configuration Considerations” or check with an authorized Red Hat representative.

- Cluster nodes — Computers that are capable of running Red Hat Enterprise Linux 5 software, with at least 1GB of RAM.
- Ethernet switch or hub for public network — This is required for client access to the cluster.
- Ethernet switch or hub for private network — This is required for communication among the cluster nodes and other cluster hardware such as network power switches and Fibre Channel switches.
- Network power switch — A network power switch is recommended to perform fencing in an enterprise-level cluster.
- Fibre Channel switch — A Fibre Channel switch provides access to Fibre Channel storage.
Other options are available for storage according to the type of storage interface; for example, iSCSI or GNBD. A Fibre Channel switch can be configured to perform fencing.

- Storage — Some type of storage is required for a cluster. The type required depends on the purpose of the cluster.

Figure 1.1. Red Hat Cluster Hardware Overview

1.2. Installing Red Hat Cluster software

To install Red Hat Cluster software, you must have entitlements for the software. If you are using the Conga configuration GUI, you can let it install the cluster software. If you are using other tools to configure the cluster, secure and install the software as you would with Red Hat Enterprise Linux software.

1.3. Configuring Red Hat Cluster Software

Configuring Red Hat Cluster software consists of using configuration tools to specify the relationship among the cluster components. Figure 1.2, "Cluster Configuration Structure" shows an example of the hierarchical relationship among cluster nodes, high-availability services, and resources. The cluster nodes are connected to one or more fencing devices. Nodes can be
grouped into a failover domain for a cluster service. The services comprise resources such as
NFS exports, IP addresses, and shared GFS partitions.

Figure 1.2. Cluster Configuration Structure

The following cluster configuration tools are available with Red Hat Cluster:

- **Conga** — This is a comprehensive user interface for installing, configuring, and managing
 Red Hat clusters, computers, and storage attached to clusters and computers.

- **system-config-cluster** — This is a user interface for configuring and managing a Red Hat
 cluster.

- Command line tools — This is a set of command line tools for configuring and managing a
 Red Hat cluster.

A brief overview of each configuration tool is provided in the following sections:

- Section 2, “Conga”
- Section 3, “system-config-cluster Cluster Administration GUI”
- Section 4, “Command Line Administration Tools”
In addition, information about using Conga and `system-config-cluster` is provided in subsequent chapters of this document. Information about the command line tools is available in the man pages for the tools.

2. Conga

Conga is an integrated set of software components that provides centralized configuration and management of Red Hat clusters and storage. Conga provides the following major features:

- One Web interface for managing cluster and storage
- Automated Deployment of Cluster Data and Supporting Packages
- Easy Integration with Existing Clusters
- No Need to Re-Authenticate
- Integration of Cluster Status and Logs
- Fine-Grained Control over User Permissions

The primary components in Conga are luci and ricci, which are separately installable. luci is a server that runs on one computer and communicates with multiple clusters and computers via ricci. ricci is an agent that runs on each computer (either a cluster member or a standalone computer) managed by Conga.

luci is accessible through a Web browser and provides three major functions that are accessible through the following tabs:

- **homebase** — Provides tools for adding and deleting computers, adding and deleting users, and configuring user privileges. Only a system administrator is allowed to access this tab.

- **cluster** — Provides tools for creating and configuring clusters. Each instance of luci lists clusters that have been set up with that luci. A system administrator can administer all clusters listed on this tab. Other users can administer only clusters that the user has permission to manage (granted by an administrator).

- **storage** — Provides tools for remote administration of storage. With the tools on this tab, you can manage storage on computers whether they belong to a cluster or not.

To administer a cluster or storage, an administrator adds (or registers) a cluster or a computer to a luci server. When a cluster or a computer is registered with luci, the FQDN hostname or IP address of each computer is stored in a luci database.

You can populate the database of one luci instance from another luci instance. That capability provides a means of replicating a luci server instance and provides an efficient upgrade and testing path. When you install an instance of luci, its database is empty. However, you can import part or all of a luci database from an existing luci server when deploying a new luci server.

Each luci instance has one user at initial installation — admin. Only the admin user may add systems to a luci server. Also, the admin user can create additional user accounts and determ-
ine which users are allowed to access clusters and computers registered in the luci database. It is possible to import users as a batch operation in a new luci server, just as it is possible to import clusters and computers.

When a computer is added to a luci server to be administered, authentication is done once. No authentication is necessary from then on (unless the certificate used is revoked by a CA). After that, you can remotely configure and manage clusters and storage through the luci user interface. luci and ricci communicate with each other via XML.

The following figures show sample displays of the three major luci tabs: homebase, cluster, and storage.

For more information about Conga, refer to Chapter 2, Configuring Red Hat Cluster With Conga, Chapter 3, Managing Red Hat Cluster With Conga, and the online help available with the luci server.

![Figure 1.3. luci homebase Tab](image-url)
Figure 1.4. luci cluster Tab
This section provides an overview of the cluster administration graphical user interface (GUI) available with Red Hat Cluster Suite — system-config-cluster. The GUI is for use with the cluster infrastructure and the high-availability service management components. The GUI consists of two major functions: the Cluster Configuration Tool and the Cluster Status Tool. The Cluster Configuration Tool provides the capability to create, edit, and propagate the cluster configuration file (/etc/cluster/cluster.conf). The Cluster Status Tool provides the capability to manage high-availability services. The following sections summarize those functions.

3.1. Cluster Configuration Tool

You can access the Cluster Configuration Tool (Figure 1.6, “Cluster Configuration Tool”) through the Cluster Configuration tab in the Cluster Administration GUI.
The Cluster Configuration Tool represents cluster configuration components in the configuration file (/etc/cluster/cluster.conf) with a hierarchical graphical display in the left panel. A triangle icon to the left of a component name indicates that the component has one or more subordinate components assigned to it. Clicking the triangle icon expands and collapses the portion of the tree below a component. The components displayed in the GUI are summarized as follows:

- **Cluster Nodes** — Displays cluster nodes. Nodes are represented by name as subordinate elements under **Cluster Nodes**. Using configuration buttons at the bottom of the right frame (below **Properties**), you can add nodes, delete nodes, edit node properties, and configure fencing methods for each node.

- **Fence Devices** — Displays fence devices. Fence devices are represented as subordinate
elements under **Fence Devices**. Using configuration buttons at the bottom of the right frame (below **Properties**), you can add fence devices, delete fence devices, and edit fence-device properties. Fence devices must be defined before you can configure fencing (with the **Manage Fencing For This Node** button) for each node.

- **Managed Resources** — Displays failover domains, resources, and services.

- **Failover Domains** — For configuring one or more subsets of cluster nodes used to run a high-availability service in the event of a node failure. Failover domains are represented as subordinate elements under **Failover Domains**. Using configuration buttons at the bottom of the right frame (below **Properties**), you can create failover domains (when **Failover Domains** is selected) or edit failover domain properties (when a failover domain is selected).

- **Resources** — For configuring shared resources to be used by high-availability services. Shared resources consist of file systems, IP addresses, NFS mounts and exports, and user-created scripts that are available to any high-availability service in the cluster. Resources are represented as subordinate elements under **Resources**. Using configuration buttons at the bottom of the right frame (below **Properties**), you can create resources (when **Resources** is selected) or edit resource properties (when a resource is selected).

 Note

 The **Cluster Configuration Tool** provides the capability to configure private resources, also. A private resource is a resource that is configured for use with only one service. You can configure a private resource within a **Service** component in the GUI.

- **Services** — For creating and configuring high-availability services. A service is configured by assigning resources (shared or private), assigning a failover domain, and defining a recovery policy for the service. Services are represented as subordinate elements under **Services**. Using configuration buttons at the bottom of the right frame (below **Properties**), you can create services (when **Services** is selected) or edit service properties (when a service is selected).

3.2. Cluster Status Tool

You can access the **Cluster Status Tool** (Figure 1.7, “Cluster Status Tool”) through the **Cluster Management** tab in Cluster Administration GUI.
The nodes and services displayed in the Cluster Status Tool are determined by the cluster configuration file (`/etc/cluster/cluster.conf`). You can use the Cluster Status Tool to enable, disable, restart, or relocate a high-availability service.

4. Command Line Administration Tools

In addition to Conga and the `system-config-cluster` Cluster Administration GUI, command line tools are available for administering the cluster infrastructure and the high-availability service management components. The command line tools are used by the Cluster Administration GUI and init scripts supplied by Red Hat. Table 1.1, “Command Line Tools” summarizes the command line tools.
5. Configuration Considerations

You can configure a Red Hat Cluster in a variety of ways to suit your needs. Take into account the following considerations when you plan, configure, and implement your Red Hat Cluster.

<table>
<thead>
<tr>
<th>Command Line Tool</th>
<th>Used With</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccs_tool — Cluster Configura-</td>
<td>Cluster Infrastructure</td>
<td>ccs_tool is a program for making online updates to the cluster configuration file. It provides the capability to create and modify cluster infrastructure components (for example, creating a cluster, adding and removing a node). For more information about this tool, refer to the ccs_tool(8) man page.</td>
</tr>
<tr>
<td>tion System Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cman_tool — Cluster Manage-</td>
<td>Cluster Infrastructure</td>
<td>cman_tool is a program that manages the CMAN cluster manager. It provides the capability to join a cluster, leave a cluster, kill a node, or change the expected quorum votes of a node in a cluster. For more information about this tool, refer to the cman_tool(8) man page.</td>
</tr>
<tr>
<td>ment Tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fence_tool — Fence Tool</td>
<td>Cluster Infrastructure</td>
<td>fence_tool is a program used to join or leave the default fence domain. Specifically, it starts the fence daemon (fenced) to join the domain and kills fenced to leave the domain. For more information about this tool, refer to the fence_tool(8) man page.</td>
</tr>
<tr>
<td>clustat — Cluster Status</td>
<td>High-availability Service Management</td>
<td>The clustat command displays the status of the cluster. It shows membership information, quorum view, and the state of all configured user services. For more information about this tool, refer to the clustat(8) man page.</td>
</tr>
<tr>
<td>Utility</td>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>clusvcadm — Cluster User</td>
<td>High-availability Service Manage-</td>
<td>The clusvcadm command allows you to enable, disable, relocate, and restart high-availability services in a cluster. For more information about this tool, refer to the clusvcadm(8) man page.</td>
</tr>
<tr>
<td>Service Administration Utility</td>
<td>ment Components</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1. Command Line Tools

5. Configuration Considerations

You can configure a Red Hat Cluster in a variety of ways to suit your needs. Take into account the following considerations when you plan, configure, and implement your Red Hat Cluster.

No-single-point-of-failure hardware configuration

Clusters can include a dual-controller RAID array, multiple bonded network channels, multiple paths between cluster members and storage, and redundant uninterruptible power supply (UPS) systems to ensure that no single failure results in application down time or loss of data.

Alternatively, a low-cost cluster can be set up to provide less availability than a no-single-point-of-failure cluster. For example, you can set up a cluster with a single-controller RAID array and only a single Ethernet channel.
5. Configuration Considerations

Certain low-cost alternatives, such as host RAID controllers, software RAID without cluster support, and multi-initiator parallel SCSI configurations are not compatible or appropriate for use as shared cluster storage.

Data integrity assurance

To ensure data integrity, only one node can run a cluster service and access cluster-service data at a time. The use of power switches in the cluster hardware configuration enables a node to power-cycle another node before restarting that node’s cluster services during a failover process. This prevents two nodes from simultaneously accessing the same data and corrupting it. It is strongly recommended that fence devices (hardware or software solutions that remotely power, shutdown, and reboot cluster nodes) are used to guarantee data integrity under all failure conditions. Watchdog timers provide an alternative way to ensure correct operation of cluster service failover.

Ethernet channel bonding

Cluster quorum and node health is determined by communication of messages among cluster nodes via Ethernet. In addition, cluster nodes use Ethernet for a variety of other critical cluster functions (for example, fencing). With Ethernet channel bonding, multiple Ethernet interfaces are configured to behave as one, reducing the risk of a single-point-of-failure in the typical switched Ethernet connection among cluster nodes and other cluster hardware.
Chapter 2. Configuring Red Hat Cluster With Conga

This chapter describes how to configure Red Hat Cluster software using Conga, and consists of the following sections:

- Section 1, “Configuration Tasks”
- Section 2, “Starting luci and ricci”.
- Section 3, “Creating A Cluster”
- Section 4, “Global Cluster Properties”
- Section 5, “Configuring Fence Devices”
- Section 6, “Configuring Cluster Members”
- Section 7, “Configuring a Failover Domain”
- Section 8, “Adding Cluster Resources”
- Section 9, “Adding a Cluster Service to the Cluster”
- Section 10, “Configuring Cluster Storage”

1. Configuration Tasks

Configuring Red Hat Cluster software with Conga consists of the following steps:

1. Configuring and running the Conga configuration user interface — the luci server. Refer to Section 2, “Starting luci and ricci”.
2. Creating a cluster. Refer to Section 3, “Creating A Cluster”.
3. Configuring global cluster properties. Refer to Section 4, “Global Cluster Properties”.
4. Configuring fence devices. Refer to Section 5, “Configuring Fence Devices”.
5. Configuring cluster members. Refer to Section 6, “Configuring Cluster Members”.
6. Creating failover domains. Refer to Section 7, “Configuring a Failover Domain”.
7. Creating resources. Refer to Section 8, “Adding Cluster Resources”.
8. Creating cluster services. Refer to Section 9, “Adding a Cluster Service to the Cluster”.
9. Configuring storage. Refer to Section 10, “Configuring Cluster Storage”.

2. Starting luci and ricci
To administer Red Hat Clusters with Conga, install and run luci and ricci as follows:

1. At each node to be administered by Conga, install the ricci agent. For example:

   ```
   # yum install ricci
   ```

2. At each node to be administered by Conga, start ricci. For example:

   ```
   # service ricci start
   Starting ricci: [ OK ]
   ```

3. Select a computer to host luci and install the luci software on that computer. For example:

   ```
   # yum install luci
   ```

 Note
 Typically, a computer in a server cage or a data center hosts luci; however, a cluster computer can host luci.

4. At the computer running luci, initialize the luci server using the luci_admin init command. For example:

   ```
   # luci_admin init
   Initializing the Luci server
   Creating the 'admin' user
   Enter password: <Type password and press ENTER.>
   Confirm password: <Re-type password and press ENTER.>
   Please wait...
   The admin password has been successfully set.
   Generating SSL certificates...
   Luci server has been successfully initialized
   Restart the Luci server for changes to take effect
   eg. service luci restart
   ```

5. Start luci using service luci restart. For example:

   ```
   # service luci restart
   Shutting down luci: [ OK ]
   Starting luci: generating https SSL certificates... done [ OK ]
   ```

 Please, point your web browser to https://nano-01:8084 to access luci

6. At a Web browser, place the URL of the luci server into the URL address box and click Go
(or the equivalent). The URL syntax for the luci server is https://luci_server_hostname:8084. The first time you access luci, two SSL certificate dialog boxes are displayed. Upon acknowledging the dialog boxes, your Web browser displays the luci login page.

3. Creating A Cluster

Creating a cluster with luci consists of selecting cluster nodes, entering their passwords, and submitting the request to create a cluster. If the node information and passwords are correct, Conga automatically installs software into the cluster nodes and starts the cluster. Create a cluster as follows:

1. As administrator of luci, select the cluster tab.

2. Click Create a New Cluster.

3. At the Cluster Name text box, enter a cluster name. The cluster name cannot exceed 15 characters. Add the node name and password for each cluster node. Enter the node name for each node in the Node Hostname column; enter the root password for each node in the Root Password column. Check the Enable Shared Storage Support checkbox if clustered storage is required.

4. Click Submit. Clicking Submit causes the following actions:

 a. Cluster software packages to be downloaded onto each cluster node.
 b. Cluster software to be installed onto each cluster node.
 c. Cluster configuration file to be created and propagated to each node in the cluster.
 d. Starting the cluster.

 A progress page shows the progress of those actions for each node in the cluster.

When the process of creating a new cluster is complete, a page is displayed providing a configuration interface for the newly created cluster.

4. Global Cluster Properties

When a cluster is created, or if you select a cluster to configure, a cluster-specific page is displayed. The page provides an interface for configuring cluster-wide properties and detailed properties. You can configure cluster-wide properties with the tabbed interface below the cluster name. The interface provides the following tabs: General, Fence, Multicast, and Quorum Partition. To configure the parameters in those tabs, follow the steps in this section. If you do not need to configure parameters in a tab, skip the step for that tab.

1. General tab — This tab displays cluster name, the configuration version, and advanced cluster properties. The parameters are summarized as follows:
• The **Cluster Name** text box displays the cluster name; it does not accept a cluster name change. You cannot change the cluster name. The only way to change the name of a Red Hat cluster is to create a new cluster configuration with the new name.

• The **Configuration Version** value is set to 1 by default and is automatically incremented each time you modify your cluster configuration. However, if you need to set it to another value, you can specify it at the **Configuration Version** text box.

• You can enter advanced cluster properties by clicking **Show advanced cluster properties**. Clicking **Show advanced cluster properties** reveals a list of advanced properties. You can click any advanced property for online help about the property.

Enter the values required and click **Apply** for changes to take effect.

2. **Fence tab** — This tab displays the **Fence Daemon Properties** parameters: **Post-Fail Delay** and **Post-Join Delay**. The parameters are summarized as follows:

 • The **Post-Fail Delay** parameter is the number of seconds the fence daemon (``fenced``) waits before fencing a node (a member of the fence domain) after the node has failed. The **Post-Fail Delay** default value is 0. Its value may be varied to suit cluster and network performance.

 • The **Post-Join Delay** parameter is the number of seconds the fence daemon (``fenced``) waits before fencing a node after the node joins the fence domain. The **Post-Join Delay** default value is 3. A typical setting for **Post-Join Delay** is between 20 and 30 seconds, but can vary according to cluster and network performance.

Enter values required and click **Apply** for changes to take effect.

Note

For more information about **Post-Join Delay** and **Post-Fail Delay**, refer to the fenced(8) man page.

3. **Multicast tab** — This tab displays the **Multicast Configuration** parameters: **Let cluster choose the multicast address** and **Specify the multicast address manually**. Red Hat Cluster software chooses a multicast address for cluster management communication among cluster nodes; therefore, the default setting is **Let cluster choose the multicast address**. If you need to use a specific multicast address, click **Specify the multicast address manually**, enter a multicast address into the text box, and click **Apply** for changes to take effect.

4. **Quorum Partition tab** — This tab displays the **Quorum Partition Configuration** parameters: **Do not use a Quorum Partition** and **Use a Quorum Partition**. The default setting is **Do not use a Quorum Partition**. If you need to use a quorum disk, click **Use a Quorum Partition**, enter quorum disk parameters, and click **Apply** for changes to take effect.
5. Configuring Fence Devices

Configuring fence devices consists of creating, modifying, and deleting fence devices. Creating a fence device consists of selecting a fence device type and entering parameters for that fence device (for example, name, IP address, login, and password). Modifying a fence device consists of selecting an existing fence device and changing parameters for that fence device. Deleting a fence device consists of selecting an existing fence device and deleting it.

Tip
If you are creating a new cluster, you can create fence devices when you configure cluster nodes. Refer to Section 6, “Configuring Cluster Members”.

With Conga you can create shared and non-shared fence devices.

The following shared fence devices are available:

- APC Power Switch
- Brocade Fabric Switch
- Bull PAP
- Egenera SAN Controller
- GNBD
- IBM Blade Center
- McData SAN Switch
- QLogic SANbox2
- SCSI Fencing
- Virtual Machine Fencing
- Vixel SAN Switch
- WTI Power Switch

The following non-shared fence devices are available:
This section provides procedures for the following tasks:

- Creating shared fence devices — Refer to Section 5.1, “Creating a Shared Fence Device”. The procedures apply only to creating shared fence devices. You can create non-shared (and shared) fence devices while configuring nodes (refer to Section 6, “Configuring Cluster Members”).

- Modifying or deleting fence devices — Refer to Section 5.2, “Modifying or Deleting a Fence Device”. The procedures apply to both shared and non-shared fence devices.

The starting point of each procedure is at the cluster-specific page that you navigate to from Choose a cluster to administer displayed on the cluster tab.

5.1. Creating a Shared Fence Device

To create a shared fence device, follow these steps:

1. At the detailed menu for the cluster (below the clusters menu), click Shared Fence Devices. Clicking Shared Fence Devices causes the display of the fence devices for a cluster and causes the display of menu items for fence device configuration: Add a Fence Device and Configure a Fence Device.

 Note

 If this is an initial cluster configuration, no fence devices have been created, and therefore none are displayed.

2. Click Add a Fence Device. Clicking Add a Fence Device causes the Add a Sharable Fence Device page to be displayed (refer to Figure 2.1, “Fence Device Configuration”).

• Dell DRAC
• HP iLO
• IBM RSA II
• IPMI LAN
• RPS10 Serial Switch
Figure 2.1. Fence Device Configuration

3. At the Add a Sharable Fence Device page, click the drop-down box under Fencing Type and select the type of fence device to configure.

4. Specify the information in the Fencing Type dialog box according to the type of fence device. Refer to Appendix B, Fence Device Parameters for more information about fence device parameters.

5. Click Add this shared fence device.

6. Clicking Add this shared fence device causes a progress page to be displayed temporarily. After the fence device has been added, the detailed cluster properties menu is updated with the fence device under Configure a Fence Device.

5.2. Modifying or Deleting a Fence Device

To modify or delete a fence device, follow these steps:
6. Configuring Cluster Members

Configuring cluster members consists of initially configuring nodes in a newly configured cluster, adding members, and deleting members. The following sections provide procedures for initial configuration of nodes, adding nodes, and deleting nodes:

• Section 6.1, “Initially Configuring Members”
• Section 6.2, “Adding a Member to a Running Cluster”
• Section 6.3, “Deleting a Member from a Cluster”

6.1. Initially Configuring Members

Creating a cluster consists of selecting a set of nodes (or members) to be part of the cluster. Once you have completed the initial step of creating a cluster and creating fence devices, you need to configure cluster nodes. To initially configure cluster nodes after creating a new cluster, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from Choose a cluster to administer displayed on the cluster tab.
6.2. Adding a Member to a Running Cluster

To add a member to a running cluster, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from Choose a cluster to administer displayed on the cluster tab.

1. At the detailed menu for the cluster (below the clusters menu), click Nodes. Clicking Nodes causes the display of an Add a Node element and a Configure element with a list of the nodes already configured in the cluster.

2. Click a link for a node at either the list in the center of the page or in the list in the detailed menu under the clusters menu. Clicking a link for a node causes a page to be displayed for that link showing how that node is configured.

3. At the bottom of the page, under Main Fencing Method, click Add a fence device to this level.

4. Select a fence device and provide parameters for the fence device (for example port number).

 Note

 You can choose from an existing fence device or create a new fence device.

5. Click Update main fence properties and wait for the change to take effect.

6.2. Adding a Member to a Running Cluster

To add a member to a running cluster, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from Choose a cluster to administer displayed on the cluster tab.

1. At the detailed menu for the cluster (below the clusters menu), click Nodes. Clicking Nodes causes the display of an Add a Node element and a Configure element with a list of the nodes already configured in the cluster. (In addition, a list of the cluster nodes is displayed in the center of the page.)

2. Click Add a Node. Clicking Add a Node causes the display of the Add a node to cluster name page.

3. At that page, enter the node name in the Node Hostname text box; enter the root password in the Root Password text box. Check the Enable Shared Storage Support checkbox if clustered storage is required. If you want to add more nodes, click Add another entry and enter node name and password for the each additional node.

4. Click Submit. Clicking Submit causes the following actions:

 a. Cluster software packages to be downloaded onto the added node.

 b. Cluster software to be installed (or verification that the appropriate software packages are installed) onto the added node.

 c. Cluster configuration file to be updated and propagated to each node in the cluster — including the added node.
6.3. Deleting a Member from a Cluster

To delete a member from an existing cluster that is currently in operation, follow the steps in this section. The starting point of the procedure is at the Choose a cluster to administer page (displayed on the cluster tab).

1. Click the link of the node to be deleted. Clicking the link of the node to be deleted causes a page to be displayed for that link showing how that node is configured.

 Note

 To allow services running on a node to fail over when the node is deleted, skip the next step.
2. Disable or relocate each service that is running on the node to be deleted:

Note

Repeat this step for each service that needs to be disabled or started on another node.

a. Under **Services on this Node**, click the link for a service. Clicking that link cause a configuration page for that service to be displayed.

b. On that page, at the **Choose a task** drop-down box, choose to either disable the service or start it on another node and click **Go**.

c. Upon confirmation that the service has been disabled or started on another node, click the **cluster** tab. Clicking the **cluster** tab causes the **Choose a cluster to administer** page to be displayed.

d. At the **Choose a cluster to administer** page, click the link of the node to be deleted. Clicking the link of the node to be deleted causes a page to be displayed for that link showing how that node is configured.

3. On that page, at the **Choose a task** drop-down box, choose **Delete this node** and click **Go**. When the node is deleted, a page is displayed that lists the nodes in the cluster. Check the list to make sure that the node has been deleted.

7. Configuring a Failover Domain

A failover domain is a named subset of cluster nodes that are eligible to run a cluster service in the event of a node failure. A failover domain can have the following characteristics:

- **Unrestricted** — Allows you to specify that a subset of members are preferred, but that a cluster service assigned to this domain can run on any available member.

- **Restricted** — Allows you to restrict the members that can run a particular cluster service. If none of the members in a restricted failover domain are available, the cluster service cannot be started (either manually or by the cluster software).

- **Unordered** — When a cluster service is assigned to an unordered failover domain, the member on which the cluster service runs is chosen from the available failover domain members with no priority ordering.

- **Ordered** — Allows you to specify a preference order among the members of a failover domain. The member at the top of the list is the most preferred, followed by the second member in the list, and so on.
By default, failover domains are unrestricted and unordered.

In a cluster with several members, using a restricted failover domain can minimize the work to set up the cluster to run a cluster service (such as httpd), which requires you to set up the configuration identically on all members that run the cluster service. Instead of setting up the entire cluster to run the cluster service, you must set up only the members in the restricted failover domain that you associate with the cluster service.

Tip

To configure a preferred member, you can create an unrestricted failover domain comprising only one cluster member. Doing that causes a cluster service to run on that cluster member primarily (the preferred member), but allows the cluster service to fail over to any of the other members.

The following sections describe adding a failover domain and modifying a failover domain:

- Section 7.1, “Adding a Failover Domain”
- Section 7.2, “Modifying a Failover Domain”

7.1. Adding a Failover Domain

To add a failover domain, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from Choose a cluster to administer displayed on the cluster tab.

1. At the detailed menu for the cluster (below the clusters menu), click Failover Domains. Clicking Failover Domains causes the display of failover domains with related services and the display of menu items for failover domains: Add a Failover Domain and Configure a Failover Domain.

2. Click Add a Failover Domain. Clicking Add a Failover Domain causes the display of the Add a Failover Domain page.
3. At the **Add a Failover Domain** page, specify a failover domain name at the **Failover Domain Name** text box.

Note
The name should be descriptive enough to distinguish its purpose relative to other names used in your cluster.

4. To enable setting failover priority of the members in the failover domain, click the **Prioritized** checkbox. With **Prioritized** checked, you can set the priority value, **Priority**, for each node selected as members of the failover domain.

5. To restrict failover to members in this failover domain, click the checkbox next to **Restrict failover to this domain's members**. With **Restrict failover to this domain's members** checked, services assigned to this failover domain fail over only to nodes in this failover domain.

6. Configure members for this failover domain. Under **Failover domain membership**, click the **Member** checkbox for each node that is to be a member of the failover domain. If **Prioritized** is checked, set the priority in the **Priority** text box for each member of the failover domain.

7. Click **Submit**. Clicking **Submit** causes a progress page to be displayed followed by the display of the **Failover Domain Form** page. That page displays the added resource and includes the failover domain in the cluster menu to the left under **Domain**.

8. To make additional changes to the failover domain, continue modifications at the **Failover Domain Form** page and click **Submit** when you are done.

7.2. Modifying a Failover Domain

To modify a failover domain, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from Choose a cluster to administer displayed on the cluster tab.

1. At the detailed menu for the cluster (below the **clusters** menu), click **Failover Domains**. Clicking **Failover Domains** causes the display of failover domains with related services and the display of menu items for failover domains: **Add a Failover Domain** and **Configure a Failover Domain**.

2. Click **Configure a Failover Domain**. Clicking **Configure a Failover Domain** causes the display of failover domains under **Configure a Failover Domain** at the detailed menu for the cluster (below the **clusters** menu).

3. At the detailed menu for the cluster (below the **clusters** menu), click the failover domain to modify. Clicking the failover domain causes the display of the **Failover Domain Form** page. At the **Failover Domain Form** page, you can modify the failover domain name, prioritize failover, restrict failover to this domain, and modify failover domain membership.
4. Modifying failover name — To change the failover domain name, modify the text at the **Failover Domain Name** text box.

 ![Note]

 The name should be descriptive enough to distinguish its purpose relative to other names used in your cluster.

5. Failover priority — To enable or disable prioritized failover in this failover domain, click the **Prioritized** checkbox. With **Prioritized** checked, you can set the priority value, **Priority**, for each node selected as members of the failover domain. With **Prioritized not** checked, setting priority levels is disabled for this failover domain.

6. Restricted failover — To enable or disable restricted failover for members in this failover domain, click the checkbox next to **Restrict failover to this domain’s members**. With **Restrict failover to this domain’s members** checked, services assigned to this failover domain fail over only to nodes in this failover domain. With **Restrict failover to this domain’s members** not checked, services assigned to this failover domain can fail over to nodes outside this failover domain.

7. Modifying failover domain membership — Under **Failover domain membership**, click the **Member** checkbox for each node that is to be a member of the failover domain. A checked box for a node means that the node is a member of the failover domain. If **Prioritized** is checked, you can adjust the priority in the **Priority** text box for each member of the failover domain.

8. Click **Submit**. Clicking **Submit** causes a progress page to be displayed followed by the display of the **Failover Domain Form** page. That page displays the added resource and includes the failover domain in the cluster menu to the left under **Domain**.

9. To make additional changes to the failover domain, continue modifications at the **Failover Domain Form** page and click **Submit** when you are done.

8. Adding Cluster Resources

To add a cluster resource, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from **Choose a cluster to administer** displayed on the **cluster** tab.

1. At the detailed menu for the cluster (below the **clusters** menu), click **Resources**. Clicking **Resources** causes the display of resources in the center of the page and causes the display of menu items for resource configuration: **Add a Resource** and **Configure a Resource**.

2. Click **Add a Resource**. Clicking **Add a Resource** causes the **Add a Resource** page to be displayed.

3. At the **Add a Resource** page, click the drop-down box under **Select a Resource Type** and
select the type of resource to configure. The resource options are described as follows:

GFS

Name — Create a name for the file system resource.

Mount Point — Choose the path to which the file system resource is mounted.

Device — Specify the device file associated with the file system resource.

Options — Mount options.

File System ID — When creating a new file system resource, you can leave this field blank. Leaving the field blank causes a file system ID to be assigned automatically after you click **Submit** at the **File System Resource Configuration** dialog box. If you need to assign a file system ID explicitly, specify it in this field.

Force Unmount checkbox — If checked, forces the file system to unmount. The default setting is unchecked. **Force Unmount** kills all processes using the mount point to free up the mount when it tries to unmount. With GFS resources, the mount point is *not* unmounted at service tear-down *unless* this box is checked.

File System

Name — Create a name for the file system resource.

File System Type — Choose the file system for the resource using the drop-down menu.

Mount Point — Choose the path to which the file system resource is mounted.

Device — Specify the device file associated with the file system resource.

Options — Mount options.

File System ID — When creating a new file system resource, you can leave this field blank. Leaving the field blank causes a file system ID to be assigned automatically after you click **Submit** at the **File System Resource Configuration** dialog box. If you need to assign a file system ID explicitly, specify it in this field.

Checkboxes — Specify mount and unmount actions when a service is stopped (for example, when disabling or relocating a service):

- **Force unmount** — If checked, forces the file system to unmount. The default setting is unchecked. **Force Unmount** kills all processes using the mount point to free up the mount when it tries to unmount.

- **Reboot host node if unmount fails** — If checked, reboots the node if unmounting this file system fails. The default setting is unchecked.

- **Check file system before mounting** — If checked, causes `fsck` to be run on the file system before mounting it. The default setting is unchecked.

IP Address

IP Address — Type the IP address for the resource.
Monitor Link checkbox — Check the box to enable or disable link status monitoring of the IP address resource.

NFS Mount
Name — Create a symbolic name for the NFS mount.

Mount Point — Choose the path to which the file system resource is mounted.

Host — Specify the NFS server name.

Export Path — NFS export on the server.

NFS version — Specify NFS protocol:

- NFS3 — Specifies using NFSv3 protocol. The default setting is NFS.
- NFS4 — Specifies using NFSv4 protocol.

Options — Mount options. For more information, refer to the nfs(5) man page.

Force Unmount checkbox — If checked, forces the file system to unmount. The default setting is unchecked. Force Unmount kills all processes using the mount point to free up the mount when it tries to unmount.

NFS Client
Name — Enter a name for the NFS client resource.

Target — Enter a target for the NFS client resource. Supported targets are hostnames, IP addresses (with wild-card support), and netgroups.

Options — Additional client access rights. For more information, refer to the exports(5) man page, General Options.

NFS Export
Name — Enter a name for the NFS export resource.

Script
Name — Enter a name for the custom user script.

File (with path) — Enter the path where this custom script is located (for example, /etc/init.d/userscript)

Samba Service
Name — Enter a name for the Samba server.

Workgroup — Enter the Windows workgroup name or Windows NT domain of the Samba service.

Note
When creating or editing a cluster service, connect a Samba-service resource.
4. Click **Submit**. Clicking **Submit** causes a progress page to be displayed followed by the display of **Resources for cluster name** page. That page displays the added resource (and other resources).

9. Adding a Cluster Service to the Cluster

To add a cluster service to the cluster, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from **Choose a cluster to administer** displayed on the **cluster** tab.

1. At the detailed menu for the cluster (below the **clusters** menu), click **Services**. Clicking **Services** causes the display of services in the center of the page and causes the display of menu items for services configuration: **Add a Service** and **Configure a Service**.

2. Click **Add a Service**. Clicking **Add a Service** causes the **Add a Service** page to be displayed.

3. On the **Add a Service** page, at the **Service name** text box, type the name of the service. Below the **Service name** text box is a checkbox labeled **Automatically start this service**. The checkbox is checked by default. When the checkbox is checked, the service is started automatically when a cluster is started and running. If the checkbox is **not** checked, the service must be started manually any time the cluster comes up from the stopped state.

 Tip

 Use a descriptive name that clearly distinguishes the service from other services in the cluster.

4. Add a resource to the service; click **Add a resource to this service**. Clicking **Add a resource to this service** causes the display of two drop-down boxes: **Add a new local resource** and **Use an existing global resource**. Adding a new local resource adds a resource that is available only to this service. The process of adding a local resource is the same as adding a global resource described in Section 8, “Adding Cluster Resources”. Adding a global resource adds a resource that has been previously added as a global resource (refer to Section 8, “Adding Cluster Resources”).

5. At the drop-down box of either **Add a new local resource** or **Use an existing global resource**, select the resource to add and configure it according to the options presented. (The options are the same as described in Section 8, “Adding Cluster Resources”.)
6. If you want to add resources to that resource, click Add a child. Clicking Add a child causes the display of additional options to local and global resources. You can continue adding children resources to the resource to suit your requirements. To view children resources, click the triangle icon to the left of Show Children.

7. When you have completed adding resources to the service, and have completed adding children resources to resources, click Submit. Clicking Submit causes a progress page to be displayed followed by a page displaying the added service (and other services).

10. Configuring Cluster Storage

To configure storage for a cluster, click the storage tab. Clicking that tab causes the display of the Welcome to Storage Configuration Interface page.

The storage tab allows you to monitor and configure storage on remote systems. It provides a means for configuring disk partitions, logical volumes (clustered and single system use), file system parameters, and mount points. The storage tab provides an interface for setting up shared storage for clusters and offers GFS and other file systems as file system options. When a you select the storage tab, the Welcome to Storage Configuration Interface page shows a list of systems available to the you in a navigation table to the left. A small form allows you to choose a storage unit size to suit your preference. That choice is persisted and can be changed at any time by returning to this page. In addition, you can change the unit type on specific configuration.
forms throughout the storage user interface. This general choice allows you to avoid difficult
decimal representations of storage size (for example, if you know that most of your storage is
measured in gigabytes, terabytes, or other more familiar representations).

Additionally, the **Welcome to Storage Configuration Interface** page lists systems that you are
authorized to access, but currently are unable to administer because of a problem. Examples of
problems:

- A computer is unreachable via the network.
- A computer has been re-imaged and the *luci* server admin must re-authenticate with the
 ricci agent on the computer.

A reason for the trouble is displayed if the storage user interface can determine it.

Only those computers that the user is privileged to administer is shown in the main navigation
table. If you have no permissions on any computers, a message is displayed.

After you select a computer to administer, a general properties page is displayed for the com-
puter. This page is divided into three sections:

- **Hard Drives**
- **Partitions**
- **Volume Groups**

Each section is set up as an expandable tree, with links to property sheets for specific devices,
partitions, and storage entities.

Configure the storage for your cluster to suit your cluster requirements. If you are configuring
Red Hat GFS, configure clustered logical volumes first, using CLVM. For more information
about CLVM and GFS refer to Red Hat documentation for those products.
Chapter 3. Managing Red Hat Cluster With Conga

This chapter describes various administrative tasks for managing a Red Hat Cluster and consists of the following sections:

• Section 1, “Starting, Stopping, and Deleting Clusters”
• Section 2, “Managing Cluster Nodes”
• Section 3, “Managing High-Availability Services”
• Section 4, “Diagnosing and Correcting Problems in a Cluster”

1. Starting, Stopping, and Deleting Clusters

You can perform the following cluster-management functions through the luci server component of Conga:

• Restart a cluster.
• Start a cluster.
• Stop a cluster.
• Delete a cluster.

To perform one of the functions in the preceding list, follow the steps in this section. The starting point of the procedure is at the cluster tab (at the Choose a cluster to administer page).

1. At the right of the Cluster Name for each cluster listed on the Choose a cluster to administer page is a drop-down box. By default, the drop-down box is set to Restart this cluster. Clicking the drop-down box reveals all the selections available: Restart this cluster, Stop this cluster/Start this cluster, and Delete this cluster. The actions of each function are summarized as follows:

• **Restart this cluster** — Selecting this action causes the cluster to be restarted. You can select this action for any state the cluster is in.

• **Stop this cluster/Start this cluster** — Stop this cluster is available when a cluster is running. Start this cluster is available when a cluster is stopped.

 Selecting Stop this cluster shuts down cluster software in all cluster nodes.

 Selecting Start this cluster starts cluster software.

• **Delete this cluster** — Selecting this action halts a running cluster, disables cluster software from starting automatically, and removes the cluster configuration file from each
2. Managing Cluster Nodes

You can perform the following node-management functions through the **luci** server component of **Conga**:

- Make a node leave or join a cluster.
- Fence a node.
- Reboot a node.
- Delete a node.

To perform one of the functions in the preceding list, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from **Choose a cluster to administer** displayed on the **cluster** tab.

1. At the detailed menu for the cluster (below the **clusters** menu), click **Nodes**. Clicking **Nodes** causes the display of nodes in the center of the page and causes the display of an **Add a Node** element and a **Configure** element with a list of the nodes already configured in the cluster.

2. At the right of each node listed on the page displayed from the preceding step, click the **Choose a task** drop-down box. Clicking **Choose a task** drop-down box reveals the following selections: **Have node leave cluster/Have node join cluster**, **Fence this node**, **Reboot this node**, and **Delete**. The actions of each function are summarized as follows:

 • **Have node leave cluster/Have node join cluster** — **Have node leave cluster** is available when a node has joined a cluster. **Have node join cluster** is available when a node has left a cluster.

 Selecting **Have node leave cluster** shuts down cluster software and makes the node leave the cluster. Making a node leave a cluster prevents the node from automatically joining the cluster when it is rebooted.
Selecting **Have node join cluster** starts cluster software and makes the node join the cluster. Making a node join a cluster allows the node to automatically join the cluster when it is rebooted.

- **Fence this node** — Selecting this action causes the node to be fenced according to how the node is configured to be fenced.

- **Reboot this node** — Selecting this action causes the node to be rebooted.

- **Delete** — Selecting this action causes the node to be deleted from the cluster configuration. It also stops all cluster services on the node, and deletes the `cluster.conf` file from `/etc/cluster/`.

3. Select one of the functions and click **Go**.

4. Clicking **Go** causes a progress page to be displayed. When the action is complete, a page is displayed showing the list of nodes for the cluster.

3. Managing High-Availability Services

You can perform the following management functions for high-availability services through the **luci** server component of **Conga**:

- Configure a service.
- Stop or start a service.
- Restart a service.
- Delete a service

To perform one the functions in the preceding list, follow the steps in this section. The starting point of the procedure is at the cluster-specific page that you navigate to from **Choose a cluster to administer** displayed on the **cluster** tab.

1. At the detailed menu for the cluster (below the **clusters** menu), click **Services**. Clicking **Services** causes the display of services for the cluster in the center of the page.

2. At the right of each service listed on the page, click the **Choose a task** drop-down box. Clicking **Choose a task** drop-down box reveals the following selections depending on if the service is running:

 - If service is running — **Configure this service**, **Restart this service**, and **Stop this service**.
 - If service is not running — **Configure this service**, **Start this service**, and **Delete this service**.

 The actions of each function are summarized as follows:
Configure this service — Configure this service is available when the service is running or not running. Selecting Configure this service causes the services configuration page for the service to be displayed. On that page, you can change the configuration of the service. For example, you can add a resource to the service. (For more information about adding resources and services, refer to Section 8, “Adding Cluster Resources” and Section 9, “Adding a Cluster Service to the Cluster”.) In addition, a drop-down box on the page provides other functions depending on if the service is running.

When a service is running, the drop-down box provides the following functions: restarting, disabling, and relocating the service.

When a service is not running, the drop-down box on the configuration page provides the following functions: enabling and deleting the service.

If you are making configuration changes, save the changes by clicking Save. Clicking Save causes a progress page to be displayed. When the change is complete, another page is displayed showing a list of services for the cluster.

If you have selected one of the functions in the drop-down box on the configuration page, click Go. Clicking Go causes a progress page to be displayed. When the change is complete, another page is displayed showing a list of services for the cluster.

- Restart this service and Stop this service — These selections are available when the service is running. Select either function and click Go to make the change take effect. Clicking Go causes a progress page to be displayed. When the change is complete, another page is displayed showing a list of services for the cluster.

- Start this service and Delete this service — These selections are available when the service is not running. Select either function and click Go to make the change take effect. Clicking Go causes a progress page to be displayed. When the change is complete, another page is displayed showing a list of services for the cluster.

4. Diagnosing and Correcting Problems in a Cluster

For information about diagnosing and correcting problems in a cluster, contact an authorized Red Hat support representative.
This chapter describes how to configure Red Hat Cluster software using system-config-cluster, and consists of the following sections:

- Section 1, “Configuration Tasks”
- Section 2, “Starting the Cluster Configuration Tool”
- Section 3, “Naming The Cluster”
- Section 4, “Configuring Fence Devices”
- Section 5, “Adding and Deleting Members”
- Section 6, “Configuring a Failover Domain”
- Section 7, “Adding Cluster Resources”
- Section 8, “Adding a Cluster Service to the Cluster”
- Section 9, “Propagating The Configuration File: New Cluster”
- Section 10, “Starting the Cluster Software”

1. Configuration Tasks

Configuring Red Hat Cluster software with system-config-cluster consists of the following steps:

1. Starting the Cluster Configuration Tool, system-config-cluster. Refer to Section 2, “Starting the Cluster Configuration Tool”.
2. Naming the cluster. Refer to Section 3, “Naming The Cluster”.
3. Creating fence devices. Refer to Section 4, “Configuring Fence Devices”.
4. Creating cluster members. Refer to Section 5, “Adding and Deleting Members”.
5. Creating failover domains. Refer to Section 6, “Configuring a Failover Domain”.
6. Creating resources. Refer to Section 7, “Adding Cluster Resources”.
7. Creating cluster services. Refer to Section 8, “Adding a Cluster Service to the Cluster”.
8. Propagating the configuration file to the other nodes in the cluster. Refer to Section 9, “Propagating The Configuration File: New Cluster”.

36
9. Starting the cluster software. Refer to Section 10, “Starting the Cluster Software”.

2. Starting the Cluster Configuration Tool

You can start the **Cluster Configuration Tool** by logging in to a cluster node as root with the `ssh -Y` command and issuing the `system-config-cluster` command. For example, to start the **Cluster Configuration Tool** on cluster node nano-01, do the following:

1. Log in to a cluster node and run `system-config-cluster`. For example:

   ```
   $ ssh -Y root@nano-01
   .
   .
   # system-config-cluster
   ```

2. If this is the first time you have started the **Cluster Configuration Tool**, the program prompts you to either open an existing configuration or create a new one. Click **Create New Configuration** to start a new configuration file (refer to Figure 4.1, “Starting a New Configuration File”).

 Figure 4.1. Starting a New Configuration File

 ![Starting a New Configuration File](image)

 Note

 The **Cluster Management** tab for the Red Hat Cluster Suite management GUI is available after you save the configuration file with the **Cluster Configuration Tool**, exit, and restart the Red Hat Cluster Suite management GUI (`system-config-cluster`). (The **Cluster Management** tab displays the status of the cluster service manager, cluster nodes, and resources, and shows statistics concerning cluster service operation. To manage the cluster system further, choose the **Cluster Configuration** tab.)
3. Clicking **Create New Configuration** causes the **New Configuration** dialog box to be displayed (refer to Figure 4.2, “Creating A New Configuration”). The **New Configuration** dialog box provides a text box for cluster name and the following checkboxes: **Custom Configure Multicast** and **Use a Quorum disk**. In most circumstances you only need to configure the cluster name. Red Hat Cluster software chooses a multicast address for cluster management communication among cluster nodes. If you need to use a specific multicast address, click the **Custom Configure Multicast** checkbox and enter a multicast address in the **Address** text boxes. If you need to use a quorum disk, click the **Use a Quorum disk** checkbox and enter quorum disk parameters. For information about quorum disk parameters, refer to the qdisk(8) man page.
3. Naming The Cluster

Naming the cluster consists of specifying a cluster name, a configuration version (optional), and values for Post-Join Delay and Post-Fail Delay. Name the cluster as follows:

1. At the left frame, click Cluster.

2. At the bottom of the right frame (labeled Properties), click the Edit Cluster Properties button. Clicking that button causes a Cluster Properties dialog box to be displayed. The
3. At the Cluster Alias text box, specify a name for the cluster. The name should be descriptive enough to distinguish it from other clusters and systems on your network (for example, nfs_cluster or httpd_cluster). The cluster name cannot exceed 15 characters.

Tip
Choose the cluster name carefully. The only way to change the name of a Red Hat cluster is to create a new cluster configuration with the new name.

4. (Optional) The Config Version value is set to 1 by default and is automatically incremented each time you save your cluster configuration. However, if you need to set it to another value, you can specify it at the Config Version text box.

a. The Post-Join Delay parameter is the number of seconds the fence daemon (fenced) waits before fencing a node after the node joins the fence domain. The Post-Join Delay default value is 3. A typical setting for Post-Join Delay is between 20 and 30 seconds, but can vary according to cluster and network performance.

b. The Post-Fail Delay parameter is the number of seconds the fence daemon (fenced) waits before fencing a node (a member of the fence domain) after the node has failed. The Post-Fail Delay default value is 0. Its value may be varied to suit cluster and network performance.

Note
For more information about Post-Join Delay and Post-Fail Delay, refer to the fenced(8) man page.

6. Save cluster configuration changes by selecting File => Save.

4. Configuring Fence Devices

Configuring fence devices for the cluster consists of selecting one or more fence devices and specifying fence-device-dependent parameters (for example, name, IP address, login, and password).

To configure fence devices, follow these steps:

1. Click Fence Devices. At the bottom of the right frame (labeled Properties), click the Add a
Fence Device button. Clicking Add a Fence Device causes the Fence Device Configuration dialog box to be displayed (refer to Figure 4.4, “Fence Device Configuration”).

Figure 4.4. Fence Device Configuration

2. At the Fence Device Configuration dialog box, click the drop-down box under Add a New Fence Device and select the type of fence device to configure.

3. Specify the information in the Fence Device Configuration dialog box according to the type of fence device. Refer to Appendix B, Fence Device Parameters for more information about fence device parameters.

4. Click OK.

5. Choose File => Save to save the changes to the cluster configuration.

5. Adding and Deleting Members

The procedure to add a member to a cluster varies depending on whether the cluster is a newly-configured cluster or a cluster that is already configured and running. To add a member to a new cluster, refer to Section 5.1, “Adding a Member to a Cluster”. To add a member to an existing cluster, refer to Section 5.2, “Adding a Member to a Running Cluster”. To delete a member from a cluster, refer to Section 5.3, “Deleting a Member from a Cluster”.

5.1. Adding a Member to a Cluster

To add a member to a new cluster, follow these steps:

1. Click Cluster Node.
2. At the bottom of the right frame (labeled Properties), click the Add a Cluster Node button. Clicking that button causes a Node Properties dialog box to be displayed. The Node Properties dialog box presents text boxes for Cluster Node Name and Quorum Votes (refer to Figure 4.5, “Adding a Member to a New Cluster”).

![Cluster Node Name: tng3-1
Quorum Votes:](image.png)

Figure 4.5. Adding a Member to a New Cluster

3. At the Cluster Node Name text box, specify a node name. The entry can be a name or an IP address of the node on the cluster subnet.

Note

Each node must be on the same subnet as the node from which you are running the Cluster Configuration Tool and must be defined either in DNS or in the /etc/hosts file of each cluster node.

Note

The node on which you are running the Cluster Configuration Tool must be explicitly added as a cluster member; the node is not automatically added to the cluster configuration as a result of running the Cluster Configuration Tool.

4. Optionally, at the Quorum Votes text box, you can specify a value; however in most configurations you can leave it blank. Leaving the Quorum Votes text box blank causes the quorum votes value for that node to be set to the default value of 1.

5. Click OK.

6. Configure fencing for the node:

 a. Click the node that you added in the previous step.

 b. At the bottom of the right frame (below Properties), click Manage Fencing For This Node. Clicking Manage Fencing For This Node causes the Fence Configuration dialog box to be displayed.
c. At the Fence Configuration dialog box, bottom of the right frame (below Properties), click Add a New Fence Level. Clicking Add a New Fence Level causes a fence-level element (for example, Fence-Level-1, Fence-Level-2, and so on) to be displayed below the node in the left frame of the Fence Configuration dialog box.

d. Click the fence-level element.

e. At the bottom of the right frame (below Properties), click Add a New Fence to this Level. Clicking Add a New Fence to this Level causes the Fence Properties dialog box to be displayed.

f. At the Fence Properties dialog box, click the Fence Device Type drop-down box and select the fence device for this node. Also, provide additional information required (for example, Port and Switch for an APC Power Device).

g. At the Fence Properties dialog box, click OK. Clicking OK causes a fence device element to be displayed below the fence-level element.

h. To create additional fence devices at this fence level, return to step 6d. Otherwise, proceed to the next step.

i. To create additional fence levels, return to step 6c. Otherwise, proceed to the next step.

j. If you have configured all the fence levels and fence devices for this node, click Close.

7. Choose File => Save to save the changes to the cluster configuration.

5.2. Adding a Member to a Running Cluster

The procedure for adding a member to a running cluster depends on whether the cluster contains only two nodes or more than two nodes. To add a member to a running cluster, follow the steps in one of the following sections according to the number of nodes in the cluster:

- For clusters with only two nodes —

 Section 5.2.1, “Adding a Member to a Running Cluster That Contains Only Two Nodes”

- For clusters with more than two nodes —

 Section 5.2.2, “Adding a Member to a Running Cluster That Contains More Than Two Nodes”

5.2.1. Adding a Member to a Running Cluster That Contains Only Two Nodes

To add a member to an existing cluster that is currently in operation, and contains only two nodes, follow these steps:

1. Add the node and configure fencing for it as in
2. Click **Send to Cluster** to propagate the updated configuration to other running nodes in the cluster.

3. Use the `scp` command to send the updated `/etc/cluster/cluster.conf` file from one of the existing cluster nodes to the new node.

4. At the Red Hat Cluster Suite management GUI **Cluster Status Tool** tab, disable each service listed under **Services**.

5. Stop the cluster software on the two running nodes by running the following commands at each node in this order:
 a. `service rgmanager stop`
 b. `service gfs stop`, if you are using Red Hat GFS
 c. `service clvmd stop`
 d. `service cman stop`

6. Start cluster software on all cluster nodes (including the added one) by running the following commands in this order:
 a. `service cman start`
 b. `service clvmd start`
 c. `service gfs start`, if you are using Red Hat GFS
 d. `service rgmanager start`

7. Start the Red Hat Cluster Suite management GUI. At the **Cluster Configuration Tool** tab, verify that the configuration is correct. At the **Cluster Status Tool** tab verify that the nodes and services are running as expected.

5.2.2. Adding a Member to a Running Cluster That Contains *More Than* Two Nodes

To add a member to an existing cluster that is currently in operation, and contains *more than* two nodes, follow these steps:

1. Add the node and configure fencing for it as in Section 5.1, “Adding a Member to a Cluster”.

2. Click **Send to Cluster** to propagate the updated configuration to other running nodes in the cluster.

3. Use the `scp` command to send the updated `/etc/cluster/cluster.conf` file from one of the existing cluster nodes to the new node.
4. Start cluster services on the new node by running the following commands in this order:
 a. service cman start
 b. service clvmd start
 c. service gfs start, if you are using Red Hat GFS
 d. service rgmanager start

5. Start the Red Hat Cluster Suite management GUI. At the **Cluster Configuration Tool** tab, verify that the configuration is correct. At the **Cluster Status Tool** tab verify that the nodes and services are running as expected.

5.3. Deleting a Member from a Cluster

To delete a member from an existing cluster that is currently in operation, follow these steps:

1. At one of the running nodes (not to be removed), run the Red Hat Cluster Suite management GUI. At the **Cluster Status Tool** tab, under **Services**, disable or relocate each service that is running on the node to be deleted.

2. Stop the cluster software on the node to be deleted by running the following commands at that node in this order:
 a. service rgmanager stop
 b. service gfs stop, if you are using Red Hat GFS
 c. service clvmd stop
 d. service cman stop

3. At the **Cluster Configuration Tool** (on one of the running members), delete the member as follows:
 a. If necessary, click the triangle icon to expand the **Cluster Nodes** property.
 b. Select the cluster node to be deleted. At the bottom of the right frame (labeled **Properties**), click the **Delete Node** button.
 c. Clicking the **Delete Node** button causes a warning dialog box to be displayed requesting confirmation of the deletion (Figure 4.6, “Confirm Deleting a Member”).
d. At that dialog box, click **Yes** to confirm deletion.

e. Propagate the updated configuration by clicking the **Send to Cluster** button. (Propagating the updated configuration automatically saves the configuration.)

4. Stop the cluster software on the remaining running nodes by running the following commands at each node in this order:

 a. `service rmgmanager stop`

 b. `service gfs stop`, if you are using Red Hat GFS

 c. `service clvmd stop`

 d. `service cman stop`

5. Start cluster software on all remaining cluster nodes by running the following commands in this order:

 a. `service cman start`

 b. `service clvmd start`

 c. `service gfs start`, if you are using Red Hat GFS

 d. `service rmgmanager start`

6. Start the Red Hat Cluster Suite management GUI. At the **Cluster Configuration Tool** tab, verify that the configuration is correct. At the **Cluster Status Tool** tab verify that the nodes and services are running as expected.

6. Configuring a Failover Domain

A failover domain is a named subset of cluster nodes that are eligible to run a cluster service in the event of a node failure. A failover domain can have the following characteristics:

- **Unrestricted** — Allows you to specify that a subset of members are preferred, but that a cluster service assigned to this domain can run on any available member.

- **Restricted** — Allows you to restrict the members that can run a particular cluster service. If none of the members in a restricted failover domain are available, the cluster service cannot be started (either manually or by the cluster software).

- **Unordered** — When a cluster service is assigned to an unordered failover domain, the member on which the cluster service runs is chosen from the available failover domain members with no priority ordering.
Ordered — Allows you to specify a preference order among the members of a failover domain. The member at the top of the list is the most preferred, followed by the second member in the list, and so on.

Note
Changing a failover domain configuration has no effect on currently running services.

Note
Failover domains are not required for operation.

By default, failover domains are unrestricted and unordered.

In a cluster with several members, using a restricted failover domain can minimize the work to set up the cluster to run a cluster service (such as httpd, which requires you to set up the configuration identically on all members that run the cluster service). Instead of setting up the entire cluster to run the cluster service, you must set up only the members in the restricted failover domain that you associate with the cluster service.

Tip
To configure a preferred member, you can create an unrestricted failover domain comprising only one cluster member. Doing that causes a cluster service to run on that cluster member primarily (the preferred member), but allows the cluster service to fail over to any of the other members.

The following sections describe adding a failover domain, removing a failover domain, and removing members from a failover domain:

- Section 6.1, “Adding a Failover Domain”
- Section 6.2, “Removing a Failover Domain”
- Section 6.3, “Removing a Member from a Failover Domain”

6.1. Adding a Failover Domain

To add a failover domain, follow these steps:

1. At the left frame of the Cluser Configuration Tool, click Failover Domains.
2. At the bottom of the right frame (labeled Properties), click the Create a Failover Domain button. Clicking the Create a Failover Domain button causes the Add Failover Domain dialog box to be displayed.

3. At the Add Failover Domain dialog box, specify a failover domain name at the Name for new Failover Domain text box and click OK. Clicking OK causes the Failover Domain Configuration dialog box to be displayed (Figure 4.7, “Failover Domain Configuration: Configuring a Failover Domain”).

Note
The name should be descriptive enough to distinguish its purpose relative to other names used in your cluster.

![Failover Domain Configuration](image)

Figure 4.7. Failover Domain Configuration: Configuring a Failover Domain

4. Click the Available Cluster Nodes drop-down box and select the members for this failover domain.

5. To restrict failover to members in this failover domain, click (check) the Restrict Failover To This Domains Members checkbox. (With Restrict Failover To This Domains Members checked, services assigned to this failover domain fail over only to nodes in this fail-
over domain.)

6. To prioritize the order in which the members in the failover domain assume control of a failed cluster service, follow these steps:

 a. Click (check) the **Prioritized List** checkbox (Figure 4.8, “Failover Domain Configuration: Adjusting Priority”). Clicking **Prioritized List** causes the **Priority** column to be displayed next to the **Member Node** column.

 ![Failover Domain Configuration: Adjusting Priority](image)

 Figure 4.8. Failover Domain Configuration: Adjusting Priority

 b. For each node that requires a priority adjustment, click the node listed in the **Member Node/Priority** columns and adjust priority by clicking one of the **Adjust Priority** arrows. Priority is indicated by the position in the **Member Node** column and the value in the **Priority** column. The node priorities are listed highest to lowest, with the highest priority node at the top of the **Member Node** column (having the lowest **Priority** number).

 7. Click **Close** to create the domain.

 8. At the **Cluster Configuration Tool**, perform one of the following actions depending on whether the configuration is for a new cluster or for one that is operational and running:

 - **New cluster** — If this is a new cluster, choose **File => Save** to save the changes to the cluster configuration.
6.2. Removing a Failover Domain

To remove a failover domain, follow these steps:

1. At the left frame of the Cluster Configuration Tool, click the failover domain that you want to delete (listed under Failover Domains).

2. At the bottom of the right frame (labeled Properties), click the Delete Failover Domain button. Clicking the Delete Failover Domain button causes a warning dialog box to be displayed asking if you want to remove the failover domain. Confirm that the failover domain identified in the warning dialog box is the one you want to delete and click Yes. Clicking Yes causes the failover domain to be removed from the list of failover domains under Failover Domains in the left frame of the Cluster Configuration Tool.

3. At the Cluster Configuration Tool, perform one of the following actions depending on whether the configuration is for a new cluster or for one that is operational and running:

 • New cluster — If this is a new cluster, choose File => Save to save the changes to the cluster configuration.

 • Running cluster — If this cluster is operational and running, and you want to propagate the change immediately, click the Send to Cluster button. Clicking Send to Cluster automatically saves the configuration change. If you do not want to propagate the change immediately, choose File => Save to save the changes to the cluster configuration.

6.3. Removing a Member from a Failover Domain

To remove a member from a failover domain, follow these steps:

1. At the left frame of the Cluster Configuration Tool, click the failover domain that you want to change (listed under Failover Domains).

2. At the bottom of the right frame (labeled Properties), click the Edit Failover Domain Properties button. Clicking the Edit Failover Domain Properties button causes the Failover Domain Configuration dialog box to be displayed (Figure 4.7, “Failover Domain Configuration: Configuring a Failover Domain”).

3. At the Failover Domain Configuration dialog box, in the Member Node column, click the node name that you want to delete from the failover domain and click the Remove Member from Domain button. Clicking Remove Member from Domain removes the node from the Member Node column. Repeat this step for each node that is to be deleted from the failover domain. (Nodes must be deleted one at a time.)
4. When finished, click Close.

5. At the **Cluster Configuration Tool**, perform one of the following actions depending on whether the configuration is for a new cluster or for one that is operational and running:

 - **New cluster** — If this is a new cluster, choose **File => Save** to save the changes to the cluster configuration.

 - **Running cluster** — If this cluster is operational and running, and you want to propagate the change immediately, click the **Send to Cluster** button. Clicking **Send to Cluster** automatically saves the configuration change. If you do not want to propagate the change immediately, choose **File => Save** to save the changes to the cluster configuration.

7. Adding Cluster Resources

To specify a device for a cluster service, follow these steps:

1. On the **Resources** property of the **Cluster Configuration Tool**, click the **Create a Resource** button. Clicking the **Create a Resource** button causes the **Resource Configuration** dialog box to be displayed.

2. At the **Resource Configuration** dialog box, under **Select a Resource Type**, click the drop-down box. At the drop-down box, select a resource to configure. The resource options are described as follows:

 GFS

 Name — Create a name for the file system resource.

 Mount Point — Choose the path to which the file system resource is mounted.

 Device — Specify the device file associated with the file system resource.

 Options — Mount options.

 File System ID — When creating a new file system resource, you can leave this field blank. Leaving the field blank causes a file system ID to be assigned automatically after you click **OK** at the **Resource Configuration** dialog box. If you need to assign a file system ID explicitly, specify it in this field.

 Force Unmount checkbox — If checked, forces the file system to unmount. The default setting is unchecked. **Force Unmount** kills all processes using the mount point to free up the mount when it tries to unmount. With GFS resources, the mount point is *not* unmounted at service tear-down *unless* this box is checked.

 File System Name — Create a name for the file system resource.

 File System Type — Choose the file system for the resource using the drop-down menu.

 Mount Point — Choose the path to which the file system resource is mounted.
Device — Specify the device file associated with the file system resource.

Options — Mount options.

File System ID — When creating a new file system resource, you can leave this field blank. Leaving the field blank causes a file system ID to be assigned automatically after you click OK at the Resource Configuration dialog box. If you need to assign a file system ID explicitly, specify it in this field.

Checkboxes — Specify mount and unmount actions when a service is stopped (for example, when disabling or relocating a service):

• Force unmount — If checked, forces the file system to unmount. The default setting is unchecked. Force Unmount kills all processes using the mount point to free up the mount when it tries to unmount.

• Reboot host node if unmount fails — If checked, reboots the node if unmounting this file system fails. The default setting is unchecked.

• Check file system before mounting — If checked, causes fsck to be run on the file system before mounting it. The default setting is unchecked.

IP Address — Type the IP address for the resource.

Monitor Link checkbox — Check the box to enable or disable link status monitoring of the IP address resource.

NFS Mount Name — Create a symbolic name for the NFS mount.

Mount Point — Choose the path to which the file system resource is mounted.

Host — Specify the NFS server name.

Export Path — NFS export on the server.

NFS and NFS4 options — Specify NFS protocol:

• NFS — Specifies using NFSv3 protocol. The default setting is NFS.

• NFS4 — Specifies using NFSv4 protocol.

Options — Mount options. For more information, refer to the nfs(5) man page.

Force Unmount checkbox — If checked, forces the file system to unmount. The default setting is unchecked. Force Unmount kills all processes using the mount point to free up the mount when it tries to unmount.

NFS Client Name — Enter a name for the NFS client resource.

Target — Enter a target for the NFS client resource. Supported targets are hostnames, IP
addresses (with wild-card support), and netgroups.

Read-Write and **Read Only** options — Specify the type of access rights for this NFS client resource:

- **Read-Write** — Specifies that the NFS client has read-write access. The default setting is Read-Write.
- **Read Only** — Specifies that the NFS client has read-only access.

Options — Additional client access rights. For more information, refer to the exports(5) man page, General Options

NFS Export Name — Enter a name for the NFS export resource.

Script Name — Enter a name for the custom user script.

File (with path) — Enter the path where this custom script is located (for example, /etc/init.d/userscript)

Samba Service Name — Enter a name for the Samba server.

Workgroup — Enter the Windows workgroup name or Windows NT domain of the Samba service.

Note

When creating or editing a cluster service, connect a Samba-service resource directly to the service, not to a resource within a service. That is, at the Service Management dialog box, use either Create a new resource for this service or Add a Shared Resource to this service; do not use Attach a new Private Resource to the Selection or Attach a Shared Resource to the selection.

3. When finished, click **OK**.

4. Choose File => **Save** to save the change to the /etc/cluster/cluster.conf configuration file.

8. Adding a Cluster Service to the Cluster

To add a cluster service to the cluster, follow these steps:

1. At the left frame, click **Services**.
2. At the bottom of the right frame (labeled Properties), click the Create a Service button. Clicking Create a Service causes the Add a Service dialog box to be displayed.

3. At the Add a Service dialog box, type the name of the service in the Name text box and click OK. Clicking OK causes the Service Management dialog box to be displayed (refer to Figure 4.9, “Adding a Cluster Service”).

 Tip

 Use a descriptive name that clearly distinguishes the service from other services in the cluster.

 ![Service Management dialog box](image)

 Figure 4.9. Adding a Cluster Service

4. If you want to restrict the members on which this cluster service is able to run, choose a failover domain from the Failover Domain drop-down box. (Refer to Section 6, “Configuring a Failover Domain” for instructions on how to configure a failover domain.)

5. Autostart This Service checkbox — This is checked by default. If Autostart This Service
is checked, the service is started automatically when a cluster is started and running. If **Autostart This Service** is *not* checked, the service must be started manually any time the cluster comes up from stopped state.

6. **Run Exclusive** checkbox — This sets a policy wherein the service only runs on nodes that have *no other* services running on them. For example, for a very busy web server that is clustered for high availability, it would be advisable to keep that service on a node alone with no other services competing for his resources — that is, **Run Exclusive** checked. On the other hand, services that consume few resources (like NFS and Samba), can run together on the same node without little concern over contention for resources. For those types of services you can leave the **Run Exclusive** unchecked.

7. Select a recovery policy to specify how the resource manager should recover from a service failure. At the upper right of the **Service Management** dialog box, there are three **Recovery Policy** options available:

 - **Restart** — Restart the service in the node the service is currently located. The default setting is **Restart**. If the service cannot be restarted in the the current node, the service is relocated.

 - **Relocate** — Relocate the service before restarting. Do not restart the node where the service is currently located.

 - **Disable** — Do not restart the service at all.

8. Click the **Add a Shared Resource to this service** button and choose the a resource listed that you have configured in Section 7, “Adding Cluster Resources”.

9. If needed, you may also create a *private* resource that you can create that becomes a subordinate resource by clicking on the **Attach a new Private Resource to the Selection** but-
ton. The process is the same as creating a shared resource described in Section 7, “Adding Cluster Resources”. The private resource will appear as a child to the shared resource to which you associated with the shared resource. Click the triangle icon next to the shared resource to display any private resources associated.

10. When finished, click **OK**.

11. Choose **File => Save** to save the changes to the cluster configuration.

Note

To verify the existence of the IP service resource used in a cluster service, you must use the `/sbin/ip addr list` command on a cluster node. The following output shows the `/sbin/ip addr list` command executed on a node running a cluster service:

```
1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP> mtu 1356 qdisc pfifo_fast qlen 1000
    link/ether 00:05:5d:9a:d8:91 brd ff:ff:ff:ff:ff:ff
    inet 10.11.4.31/22 brd 10.11.7.255 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::205:5dff:fe9a:d891/64 scope link
       valid_lft forever preferred_lft forever
```


For newly defined clusters, you must propagate the configuration file to the cluster nodes as follows:

1. Log in to the node where you created the configuration file.

2. Using the `scp` command, copy the `/etc/cluster/cluster.conf` file to all nodes in the cluster.

Note

Propagating the cluster configuration file this way is necessary for the first time a cluster is created. Once a cluster is installed and running, the cluster configuration file is propagated using the Red Hat cluster management GUI **Send to Cluster** button. For more information about propagating the cluster configuration using the GUI **Send to Cluster** button, refer to Section 3, “Modifying the Cluster Configuration”.

56
10. Starting the Cluster Software

After you have propagated the cluster configuration to the cluster nodes you can either reboot each node or start the cluster software on each cluster node by running the following commands at each node in this order:

1. service cman start
2. service clvmd start
3. service gfs start, if you are using Red Hat GFS
4. service rgmanager start
5. Start the Red Hat Cluster Suite management GUI. At the Cluster Configuration Tool tab, verify that the configuration is correct. At the Cluster Status Tool tab verify that the nodes and services are running as expected.
Chapter 5. Managing Red Hat Cluster

With system-config-cluster

This chapter describes various administrative tasks for managing a Red Hat Cluster and consists of the following sections:

- Section 1, “Starting and Stopping the Cluster Software”
- Section 2, “Managing High-Availability Services”
- Section 4, “Backing Up and Restoring the Cluster Database”
- Section 5, “Disabling the Cluster Software”
- Section 6, “Diagnosing and Correcting Problems in a Cluster”

1. Starting and Stopping the Cluster Software

To start the cluster software on a member, type the following commands in this order:

1. `service cman start`
2. `service clvmd start`
3. `service gfs start`, if you are using Red Hat GFS
4. `service rgmanager start`

To stop the cluster software on a member, type the following commands in this order:

1. `service rgmanager stop`
2. `service gfs stop`, if you are using Red Hat GFS
3. `service clvmd stop`
4. `service cman stop`

Stopping the cluster services on a member causes its services to fail over to an active member.

2. Managing High-Availability Services

You can manage cluster services with the Cluster Status Tool (Figure 5.1, “Cluster Status Tool”) through the Cluster Management tab in Cluster Administration GUI.
You can use the Cluster Status Tool to enable, disable, restart, or relocate a high-availability service. The Cluster Status Tool displays the current cluster status in the Services area and automatically updates the status every 10 seconds.

To enable a service, you can select the service in the Services area and click Enable. To disable a service, you can select the service in the Services area and click Disable. To restart a service, you can select the service in the Services area and click Restart. To relocate a service from one node to another, you can drag the service to another node and drop the service onto that node. Relocating a service restarts the service on that node. (Relocating a service to its current node — that is, dragging a service to its current node and dropping the service onto that node — restarts the service.)

The following tables describe the members and services status information displayed by the Cluster Status Tool.
Members Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member</td>
<td>The node is part of the cluster. Note: A node can be a member of a cluster; however, the node may be inactive and incapable of running services. For example, if <code>rgmanager</code> is not running on the node, but all other cluster software components are running in the node, the node appears as a Member in the Cluster Status Tool.</td>
</tr>
<tr>
<td>Dead</td>
<td>The node is unable to participate as a cluster member. The most basic cluster software is not running on the node.</td>
</tr>
</tbody>
</table>

Table 5.1. Members Status

Services Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Started</td>
<td>The service resources are configured and available on the cluster system that owns the service.</td>
</tr>
<tr>
<td>Pending</td>
<td>The service has failed on a member and is pending start on another member.</td>
</tr>
<tr>
<td>Disabled</td>
<td>The service has been disabled, and does not have an assigned owner. A disabled service is never restarted automatically by the cluster.</td>
</tr>
<tr>
<td>Stopped</td>
<td>The service is not running; it is waiting for a member capable of starting the service. A service remains in the stopped state if autostart is disabled.</td>
</tr>
<tr>
<td>Failed</td>
<td>The service has failed to start on the cluster and cannot successfully stop the service. A failed service is never restarted automatically by the cluster.</td>
</tr>
</tbody>
</table>

Table 5.2. Services Status

3. Modifying the Cluster Configuration

To modify the cluster configuration (the cluster configuration file `/etc/cluster/cluster.conf`), use the **Cluster Configuration Tool**. For more information about using the **Cluster Configuration Tool**, refer to Chapter 4, *Configuring Red Hat Cluster With system-config-cluster*.

Warning

Do not manually edit the contents of the `/etc/cluster/cluster.conf` file without guidance from an authorized Red Hat representative or unless you fully understand the consequences of editing the `/etc/cluster/cluster.conf` file manually.
Important

Although the Cluster Configuration Tool provides a Quorum Votes parameter in the Properties dialog box of each cluster member, that parameter is intended only for use during initial cluster configuration. Furthermore, it is recommended that you retain the default Quorum Votes value of 1. For more information about using the Cluster Configuration Tool, refer to Chapter 4, Configuring Red Hat Cluster With system-config-cluster.

To edit the cluster configuration file, click the Cluster Configuration tab in the cluster configuration GUI. Clicking the Cluster Configuration tab displays a graphical representation of the cluster configuration. Change the configuration file according to the following steps:

1. Make changes to cluster elements (for example, create a service).
2. Propagate the updated configuration file throughout the cluster by clicking Send to Cluster.

Note

The Cluster Configuration Tool does not display the Send to Cluster button if the cluster is new and has not been started yet, or if the node from which you are running the Cluster Configuration Tool is not a member of the cluster. If the Send to Cluster button is not displayed, you can still use the Cluster Configuration Tool; however, you cannot propagate the configuration. You can still save the configuration file. For information about using the Cluster Configuration Tool for a new cluster configuration, refer to Chapter 4, Configuring Red Hat Cluster With system-config-cluster.

3. Clicking Send to Cluster causes a Warning dialog box to be displayed. Click Yes to save and propagate the configuration.
4. Clicking Yes causes an Information dialog box to be displayed, confirming that the current configuration has been propagated to the cluster. Click OK.
5. Click the Cluster Management tab and verify that the changes have been propagated to the cluster members.

4. Backing Up and Restoring the Cluster Database

The Cluster Configuration Tool automatically retains backup copies of the three most recently used configuration files (besides the currently used configuration file). Retaining the backup copies is useful if the cluster does not function correctly because of misconfiguration and you need to return to a previous working configuration.
Each time you save a configuration file, the **Cluster Configuration Tool** saves backup copies of the three most recently used configuration files as /etc/cluster/cluster.conf.bak.1, /etc/cluster/cluster.conf.bak.2, and /etc/cluster/cluster.conf.bak.3. The backup file /etc/cluster/cluster.conf.bak.1 is the newest backup, /etc/cluster/cluster.conf.bak.2 is the second newest backup, and /etc/cluster/cluster.conf.bak.3 is the third newest backup.

If a cluster member becomes inoperable because of misconfiguration, restore the configuration file according to the following steps:

1. At the **Cluster Configuration Tool** tab of the Red Hat Cluster Suite management GUI, click **File** => **Open**.
2. Clicking **File** => **Open** causes the **system-config-cluster** dialog box to be displayed.
3. At the the **system-config-cluster** dialog box, select a backup file (for example, /etc/cluster/cluster.conf.bak.1). Verify the file selection in the **Selection** box and click **OK**.
4. Increment the configuration version beyond the current working version number as follows:
 a. Click **Cluster** => **Edit Cluster Properties**.
 b. At the **Cluster Properties** dialog box, change the **Config Version** value and click **OK**.
5. Click **File** => **Save As**.
6. Clicking **File** => **Save As** causes the **system-config-cluster** dialog box to be displayed.
7. At the the **system-config-cluster** dialog box, select /etc/cluster/cluster.conf and click **OK**. (Verify the file selection in the **Selection** box.)
8. Clicking **OK** causes an **Information** dialog box to be displayed. At that dialog box, click **OK**.
9. Propagate the updated configuration file throughout the cluster by clicking **Send to Cluster**.

Note

The **Cluster Configuration Tool** does not display the **Send to Cluster** button if the cluster is new and has not been started yet, or if the node from which you are running the **Cluster Configuration Tool** is not a member of the cluster. If the **Send to Cluster** button is not displayed, you can still use the **Cluster Configuration Tool**; however, you cannot propagate the configuration. You can still save the configuration file. For information about using the **Cluster Configuration Tool** for a new cluster configuration, refer to Chapter 4, *Configuring Red Hat Cluster With system-config-cluster*.

10. Clicking **Send to Cluster** causes a **Warning** dialog box to be displayed. Click **Yes** to propagate the configuration.
11. Click the Cluster Management tab and verify that the changes have been propagated to the cluster members.

5. Disabling the Cluster Software

It may become necessary to temporarily disable the cluster software on a cluster member. For example, if a cluster member experiences a hardware failure, you may want to reboot that member, but prevent it from rejoining the cluster to perform maintenance on the system.

Use the `/sbin/chkconfig` command to stop the member from joining the cluster at boot-up as follows:

```
# chkconfig --level 2345 rgmanager off
# chkconfig --level 2345 gfs off
# chkconfig --level 2345 clvmd off
# chkconfig --level 2345 cman off
```

Once the problems with the disabled cluster member have been resolved, use the following commands to allow the member to rejoin the cluster:

```
# chkconfig --level 2345 rgmanager on
# chkconfig --level 2345 gfs on
# chkconfig --level 2345 clvmd on
# chkconfig --level 2345 cman on
```

You can then reboot the member for the changes to take effect or run the following commands in the order shown to restart cluster software:

1. `service cman start`
2. `service clvmd start`
3. `service gfs start`, if you are using Red Hat GFS
4. `service rgmanager start`

6. Diagnosing and Correcting Problems in a Cluster

For information about diagnosing and correcting problems in a cluster, contact an authorized Red Hat support representative.
Appendix A. Example of Setting Up Apache HTTP Server

This appendix provides an example of setting up a highly available Apache HTTP Server on a Red Hat Cluster. The example describes how to set up a service to fail over an Apache HTTP Server. Variables in the example apply to this example only; they are provided to assist setting up a service that suits your requirements.

Note
This example uses the Cluster Configuration Tool (system-config-cluster). You can use comparable Conga functions to make an Apache HTTP Server highly available on a Red Hat Cluster.

1. Apache HTTP Server Setup Overview

First, configure Apache HTTP Server on all nodes in the cluster. If using a failover domain, assign the service to all cluster nodes configured to run the Apache HTTP Server. Refer to Section 6, “Configuring a Failover Domain” for instructions. The cluster software ensures that only one cluster system runs the Apache HTTP Server at one time. The example configuration consists of installing the httpd RPM package on all cluster nodes (or on nodes in the failover domain, if used) and configuring a shared GFS shared resource for the Web content.

When installing the Apache HTTP Server on the cluster systems, run the following command to ensure that the cluster nodes do not automatically start the service when the system boots:

 # chkconfig --del httpd

Rather than having the system init scripts spawn the httpd daemon, the cluster infrastructure initializes the service on the active cluster node. This ensures that the corresponding IP address and file system mounts are active on only one cluster node at a time.

When adding an httpd service, a floating IP address must be assigned to the service so that the IP address will transfer from one cluster node to another in the event of failover or service relocation. The cluster infrastructure binds this IP address to the network interface on the cluster system that is currently running the Apache HTTP Server. This IP address ensures that the cluster node running httpd is transparent to the clients accessing the service.

The file systems that contain the Web content cannot be automatically mounted on the shared storage resource when the cluster nodes boot. Instead, the cluster software must mount and unmount the file system as the httpd service is started and stopped. This prevents the cluster systems from accessing the same data simultaneously, which may result in data corruption. Therefore, do not include the file systems in the /etc/fstab file.
2. Configuring Shared Storage

To set up the shared file system resource, perform the following tasks as root on one cluster system:

1. On one cluster node, use the interactive `parted` utility to create a partition to use for the document root directory. Note that it is possible to create multiple document root directories on different disk partitions.

2. Use the `mkfs` command to create an ext3 file system on the partition you created in the previous step. Specify the drive letter and the partition number. For example:

   ```
   # mkfs -t ext3 /dev/sde3
   ```

3. Mount the file system that contains the document root directory. For example:

   ```
   # mount /dev/sde3 /var/www/html
   ```

 Do not add this mount information to the `/etc/fstab` file because only the cluster software can mount and unmount file systems used in a service.

4. Copy all the required files to the document root directory.

5. If you have CGI files or other files that must be in different directories or in separate partitions, repeat these steps, as needed.

3. Installing and Configuring the Apache HTTP Server

The Apache HTTP Server must be installed and configured on all nodes in the assigned failover domain, if used, or in the cluster. The basic server configuration must be the same on all nodes on which it runs for the service to fail over correctly. The following example shows a basic Apache HTTP Server installation that includes no third-party modules or performance tuning.

On all node in the cluster (or nodes in the failover domain, if used), install the `httpd` RPM package. For example:

```
rpm -Uvh httpd-<version>.<arch>.rpm
```

To configure the Apache HTTP Server as a cluster service, perform the following tasks:

1. Edit the `/etc/httpd/conf/httpd.conf` configuration file and customize the file according to your configuration. For example:

   ```
   • Specify the directory that contains the HTML files. Also specify this mount point when adding the service to the cluster configuration. It is only required to change this field if the mount point for the web site's content differs from the default setting of `/var/www/html/`. For example:
   ```
DocumentRoot "/mnt/htpservice/html"

- Specify a unique IP address to which the service will listen for requests. For example:

 Listen 192.168.1.100:80

 This IP address then must be configured as a cluster resource for the service using the Cluster Configuration Tool.

- If the script directory resides in a non-standard location, specify the directory that contains the CGI programs. For example:

 ScriptAlias /cgi-bin/ "*/mnt/htpservice/cgi-bin/*"

- Specify the path that was used in the previous step, and set the access permissions to default to that directory. For example:

 <Directory /mnt/htpservice/cgi-bin>
 AllowOverride None
 Options None
 Order allow,deny
 Allow from all
 </Directory>

 Additional changes may need to be made to tune the Apache HTTP Server or add module functionality. For information on setting up other options, refer to the Red Hat Enterprise Linux System Administration Guide and the Red Hat Enterprise Linux Reference Guide.

2. The standard Apache HTTP Server start script, /etc/rc.d/init.d/httpd is also used within the cluster framework to start and stop the Apache HTTP Server on the active cluster node. Accordingly, when configuring the service, specify this script by adding it as a Script resource in the Cluster Configuration Tool.

3. Copy the configuration file over to the other nodes of the cluster (or nodes of the failover domain, if configured).

Before the service is added to the cluster configuration, ensure that the Apache HTTP Server directories are not mounted. Then, on one node, invoke the Cluster Configuration Tool to add the service, as follows. This example assumes a failover domain named httpd-domain was created for this service.

1. Add the init script for the Apache HTTP Server service.

 - Select the Resources tab and click Create a Resource. The Resources Configuration properties dialog box is displayed.

 - Select Script form the drop down menu.
3. Installing and Configuring the Apache HTTP Server

- Enter a **Name** to be associated with the Apache HTTP Server service.
- Specify the path to the Apache HTTP Server init script (for example, `/etc/rc.d/init.d/httpd`) in the **File (with path)** field.
- Click **OK**.

2. Add a device for the Apache HTTP Server content files and/or custom scripts.

 - Click **Create a Resource**.
 - In the **Resource Configuration** dialog, select **File System** from the drop-down menu.
 - Enter the **Name** for the resource (for example, `httpd-content`).
 - Choose `ext3` from the **File System Type** drop-down menu.
 - Enter the mount point in the **Mount Point** field (for example, `/var/www/html/`).
 - Enter the device special file name in the **Device** field (for example, `/dev/sda3`).

3. Add an IP address for the Apache HTTP Server service.

 - Click **Create a Resource**.
 - Choose **IP Address** from the drop-down menu.
 - Enter the **IP Address** to be associated with the Apache HTTP Server service.
 - Make sure that the **Monitor Link** checkbox is left checked.
 - Click **OK**.

4. Click the **Services** property.

5. Create the Apache HTTP Server service.

 - Click **Create a Service**. Type a **Name** for the service in the **Add a Service** dialog.
 - In the **Service Management** dialog, select a **Failover Domain** from the drop-down menu or leave it as **None**.
 - Click the **Add a Shared Resource to this service** button. From the available list, choose each resource that you created in the previous steps. Repeat this step until all resources have been added.
 - Click **OK**.

6. Choose **File => Save** to save your changes.
Appendix B. Fence Device Parameters

This appendix provides tables with parameter descriptions of fence devices.

Note

Certain fence devices have an optional Password Script parameter. The Password Script parameter allows specifying that a fence-device password is supplied from a script rather than from the Password parameter. Using the Password Script parameter supersedes the Password parameter, allowing passwords to not be visible in the cluster configuration file (/etc/cluster/cluster.conf).

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the APC device connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.1. APC Power Switch

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the Brocade device connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.2. Brocade Fabric Switch
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the PAP console.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the PAP console.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the PAP console.</td>
</tr>
<tr>
<td>Password Script</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
<tr>
<td>Domain</td>
<td>Domain of the Bull PAP system to power cycle</td>
</tr>
</tbody>
</table>

Table B.3. Bull PAP (Platform Administration Processor)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name assigned to the DRAC.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the DRAC.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the DRAC.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the DRAC.</td>
</tr>
<tr>
<td>Password Script</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.4. Dell DRAC

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the BladeFrame device connected to the cluster.</td>
</tr>
<tr>
<td>CServer</td>
<td>The hostname (and optionally the username in the form of \username@hostname) assigned to the device. Refer to the fence_egenera(8) man page.</td>
</tr>
<tr>
<td>ESH Path (optional)</td>
<td>The path to the esh command on the cserver (default is /opt/pan-mgr/bin/esh)</td>
</tr>
</tbody>
</table>

Table B.5. Egenera SAN Controller

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the GNBD device used to fence the cluster. Note that the GFS server must be accessed via GNBD for cluster node fencing support.</td>
</tr>
<tr>
<td>Server</td>
<td>The hostname of each GNBD to disable. For multiple hostnames, separate each hostname with a space.</td>
</tr>
</tbody>
</table>
Table B.6. GNBD (Global Network Block Device)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the server with HP iLO support.</td>
</tr>
<tr>
<td>Hostname</td>
<td>The hostname assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supercedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.7. HP iLO (Integrated Lights Out)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the IBM BladeCenter device connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supercedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.8. IBM Blade Center

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the RSA device connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supercedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.9. IBM Remote Supervisor Adapter II (RSA II)

70
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the IPMI port.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name of a user capable of issuing power on/off commands to the given IPMI port.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the IPMI port.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>none, password, md2, or md5</td>
</tr>
<tr>
<td>Use Lanplus</td>
<td>True or 1. If blank, then value is False.</td>
</tr>
</tbody>
</table>

Table B.10. IPMI (Intelligent Platform Management Interface) LAN

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name to assign the Manual fencing agent. Refer to fence_manual(8) for more information.</td>
</tr>
</tbody>
</table>

Table B.11. Manual Fencing

Warning

Manual fencing is *not* supported for production environments.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the McData device connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.12. McData SAN Switch
Table B.13. RPS-10 Power Switch (two-node clusters only)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the WTI RPS-10 power switch connected to the cluster.</td>
</tr>
<tr>
<td>Device</td>
<td>The device the switch is connected to on the controlling host (for example, <code>/dev/ttys2</code>).</td>
</tr>
<tr>
<td>Port</td>
<td>The switch outlet number.</td>
</tr>
</tbody>
</table>

Table B.14. QLogic SANBox2 Switch

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the SANBox2 device connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Login</td>
<td>The login name used to access the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script (optional)</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.15. SCSI Fencing

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the node to be fenced. Refer to fence_scsi(8) for more information.</td>
</tr>
</tbody>
</table>

Table B.16. Virtual Machine Fencing

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the Vixel switch connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script</td>
<td>The script that supplies a password for access to the fence device. Using this supersedes the Password parameter.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>(optional)</td>
<td></td>
</tr>
</tbody>
</table>

Table B.17. Vixel SAN Switch

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>A name for the WTI power switch connected to the cluster.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address assigned to the device.</td>
</tr>
<tr>
<td>Password</td>
<td>The password used to authenticate the connection to the device.</td>
</tr>
<tr>
<td>Password Script</td>
<td>The script that supplies a password for access to the fence device.</td>
</tr>
<tr>
<td>(optional)</td>
<td>Using this supersedes the Password parameter.</td>
</tr>
</tbody>
</table>

Table B.18. WTI Power Switch
Appendix C. Upgrading A Red Hat Cluster from RHEL 4 to RHEL 5

This appendix provides a procedure for upgrading a Red Hat cluster from RHEL 4 to RHEL 5. The procedure includes changes required for Red Hat GFS and CLVM, also. For more information about Red Hat GFS, refer to *Global File System: Configuration and Administration*. For more information about LVM for clusters, refer to *LVM Administrator’s Guide: Configuration and Administration*.

Upgrading a Red Hat Cluster from RHEL 4 to RHEL 5 consists of stopping the cluster, converting the configuration from a GULM cluster to a CMAN cluster (only for clusters configured with the GULM cluster manager/lock manager), adding node IDs, and updating RHEL and cluster software. To upgrade a Red Hat Cluster from RHEL 4 to RHEL 5, follow these steps:

1. Stop client access to cluster high-availability services.
2. At each cluster node, stop the cluster software as follows:
 a. Stop all high-availability services.
 b. Run `service rgmanager stop`.
 c. Run `service gfs stop`.
 d. Run `service clvmd stop`.
 e. Depending on the type of cluster manager (either CMAN or GULM), run the following command or commands:
 - **CMAN** — Run `service fenced stop; service cman stop`.
 - **GULM** — Run `service lock_gulmd stop`.
 f. Run `service ccsd stop`.

 Note

 If `clvmd` is already stopped, an error message is displayed:

   ```
   # service clvmd stop
   Stopping clvm: [FAILED]
   
   The error message is the expected result when running `service clvmd stop` after `clvmd` has stopped.
   ```
3. Disable cluster software from starting during reboot. At each node, run `/sbin/chkconfig` as follows:

```bash
# chkconfig --level 2345 rgmanager off
# chkconfig --level 2345 gfs off
# chkconfig --level 2345 clvmd off
# chkconfig --level 2345 fenced off
# chkconfig --level 2345 cman off
# chkconfig --level 2345 ccsd off
```

4. Edit the cluster configuration file as follows:

 a. At a cluster node, open `/etc/cluster/cluster.conf` with a text editor.

 b. If your cluster is configured with GULM as the cluster manager, remove the GULM XML elements — `<gulm>` and `<gulm>` — and their content from `/etc/cluster/cluster.conf`. GULM is not supported in Red Hat Cluster Suite for RHEL 5. Example C.1, “GULM XML Elements and Content” shows an example of GULM XML elements and content.

 c. At the `<clusternode>` element for each node in the configuration file, insert `nodeid="number"` after `name="name"`. Use a number value unique to that node. Inserting it there follows the format convention of the `<clusternode>` element in a RHEL 5 cluster configuration file.

      ```
      Note
      The nodeid parameter is required in Red Hat Cluster Suite for RHEL 5. The parameter is optional in Red Hat Cluster Suite for RHEL 4. If your configuration file already contains nodeid parameters, skip this step.
      ```

 d. When you have completed editing `/etc/cluster/cluster.conf`, save the file and copy it to the other nodes in the cluster (for example, using the `scp` command).

5. If your cluster is a GULM cluster and uses Red Hat GFS, change the superblock of each GFS file system to use the DLM locking protocol. Use the `gfs_tool` command with the `sb` and `proto` options, specifying `lock_dlm` for the DLM locking protocol:

```bash
gfs_tool sb device proto lock_dlm
```

For example:

```bash
# gfs_tool sb /dev/my_vg/gfs1 proto lock_dlm
```

You shouldn’t change any of these values if the filesystem is mounted.

Are you sure? [y/n] y

```bash
current lock protocol name = "lock_gulm"
new lock protocol name = "lock_dlm"
Done
```
6. Update the software in the cluster nodes to RHEL 5 and Red Hat Cluster Suite for RHEL 5. You can acquire and update software through Red Hat Network channels for RHEL 5 and Red Hat Cluster Suite for RHEL 5.

7. Run `lvmconf --enable-cluster`.

8. Enable cluster software to start upon reboot. At each node run `/sbin/chkconfig` as follows:

```bash
# chkconfig --level 2345 rgmanager on
# chkconfig --level 2345 gfs on
# chkconfig --level 2345 clvmd on
# chkconfig --level 2345 cman on
```

9. Reboot the nodes. The RHEL 5 cluster software should start while the nodes reboot. Upon verification that the Red Hat cluster is running, the upgrade is complete.

```xml
<gulm>
  <lockserver name="gulmserver1"/>
  <lockserver name="gulmserver2"/>
  <lockserver name="gulmserver3"/>
</gulm>
```

Example C.1. GULM XML Elements and Content
Index

A
Apache HTTP Server
httpd.conf, 65
setting up service, 64

C
cluster
administration, 32, 58
diagnosing and correcting problems, 35, 63
disabling the cluster software, 63
displaying status, 10, 59
managing node, 33
starting, 57
starting, stopping, restarting, and deleting, 32
cluster administration, 32, 58
backing up the cluster database, 61
diagnosing and correcting problems in a cluster, 35, 63
disabling the cluster software, 63
displaying cluster and service status, 10, 59
managing cluster node, 33
managing high-availability services, 34
modifying the cluster configuration, 60
restoring the cluster database, 61
starting and stopping the cluster software, 58
starting, stopping, restarting, and deleting a cluster, 32
cluster configuration, 13
modifying, 60
Cluster Configuration Tool
accessing, 9
cluster database
backing up, 61
restoring, 61
cluster service
displaying status, 10, 59
cluster service managers
configuration, 29, 53, 56
cluster services
(cluster also adding to the cluster configuration)
Apache HTTP Server, setting up, 64
httpd.conf, 65
cluster software
configuration, 13
disabling, 63
installation and configuration, 36
starting and stopping, 58
cluster software installation and configuration, 36
cluster storage
configuration, 30
command line tools table, 10
configuration file
propagation of, 56
configuring cluster storage, 30
Conga
accessing, 2
overview, 4
Conga overview, 4

F
feedback, viii, viii

H
HTTP services
Apache HTTP Server
httpd.conf, 65
setting up, 64

I
introduction, vi
other Red Hat Enterprise Linux documents, vi

P
parameters, fence device, 68
power controller connection, configuring, 68
power switch
(see also power controller)

S
starting the cluster software, 57
System V init, 58

T
table
command line tools, 10
tables
power controller connection, configuring, 68
troubleshooting
diagnosing and correcting problems in a
cluster, 35, 63

U
upgrading, RHEL 4 to RHEL 5, 74