
LVM Administrator's Guide

Configuration and Administration

LVM Administrator's Guide: Configuration and Administration
Copyright © 2007 Red Hat, Inc.

This book describes the LVM logical volume manager, including information on running LVM in
a clustered environment. The content of this document is specific to the LVM2 release.

1801 Varsity Drive
Raleigh, NC 27606-2072
USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park, NC 27709
USA

Documentation-Deployment

Copyright © 2007 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set forth in
the Open Publication License, V1.0 or later (the latest version is presently available at ht-
tp://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copy-
right holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohib-
ited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Contents

Introduction .. vii
1. About This Guide .. vii
2. Audience .. vii
3. Software Versions ... vii
4. Related Documentation ... vii
5. Document Conventions .. viii

1. The LVM Logical Volume Manager .. 1
1. Logical Volumes .. 1
2. LVM Architecture Overview .. 2
3. Running LVM in a Cluster ... 3
4. Document Overview ... 4

2. LVM Components .. 6
1. Physical Volumes ... 6

1.1. LVM Physical Volume Layout ... 6
1.2. Multiple Partitions on a Disk ... 7

2. Volume Groups .. 8
3. LVM Logical Volumes ... 8

3.1. Linear Volumes ... 8
3.2. Striped Logical Volumes ...11
3.3. Mirrored Logical Volumes ...12
3.4. Snapshot Volumes ...13

3. LVM Administration Overview ..15
1. Creating LVM Volumes in a Cluster ..15
2. Logical Volume Creation Overview ...15
3. Growing a File System on a Logical Volume ...16
4. Logical Volume Backup ...16
5. Logging ..16

4. LVM Administration with CLI Commands ..18
1. Using CLI Commands ...18
2. Physical Volume Administration ...19

2.1. Creating Physical Volumes ...19
2.2. Displaying Physical Volumes ..21
2.3. Preventing Allocation on a Physical Volume ...21
2.4. Resizing a Physical Volume ..22
2.5. Removing Physical Volumes ...22

3. Volume Group Administration ..22
3.1. Creating Volume Groups ..22
3.2. Adding Physical Volumes to a Volume Group23
3.3. Displaying Volume Groups ..23
3.4. Scanning Disks for Volume Groups to Build the Cache File24
3.5. Removing Physical Volumes from a Volume Group24
3.6. Changing the Parameters of a Volume Group25
3.7. Activating and Deactivating Volume Groups ...25
3.8. Removing Volume Groups ..26
3.9. Splitting a Volume Group ..26

iv

3.10. Combining Volume Groups ...26
3.11. Backing Up Volume Group Metadata ...26
3.12. Renaming a Volume Group ...27
3.13. Moving a Volume Group to Another System27
3.14. Recreating a Volume Group Directory ..28

4. Logical Volume Administration ...28
4.1. Creating Logical Volumes ...28
4.2. Persistent Device Numbers ...32
4.3. Resizing Logical Volumes ...32
4.4. Changing the Parameters of a Logical Volume Group33
4.5. Renaming Logical Volumes ...33
4.6. Removing Logical Volumes ...33
4.7. Displaying Logical Volumes ..33
4.8. Growing Logical Volumes ...34
4.9. Extending a Striped Volume ..35
4.10. Shrinking Logical Volumes ..36

5. Creating Snapshot Volumes ..37
6. Controlling LVM Device Scans with Filters ..38
7. Online Data Relocation ..39
8. Activating Logical Volumes on Individual Nodes in a Cluster39
9. Customized Reporting for LVM ..40

9.1. Format Control ...40
9.2. Object Selection ...42
9.3. Sorting LVM Reports ..48
9.4. Specifying Units ...49

5. LVM Configuration Examples ...51
1. Creating an LVM Logical Volume on Three Disks ..51

1.1. Creating the Physical Volumes ..51
1.2. Creating the Volume Group ...51
1.3. Creating the Logical Volume ...51
1.4. Creating the File System ...52

2. Creating a Striped Logical Volume ...52
2.1. Creating the Physical Volumes ..52
2.2. Creating the Volume Group ...52
2.3. Creating the Logical Volume ...53
2.4. Creating the File System ...53

3. Splitting a Volume Group ...53
3.1. Determining Free Space ...54
3.2. Moving the Data ...54
3.3. Splitting the Volume Group ...54
3.4. Creating the New Logical Volume ..55
3.5. Making a File System and Mounting the New Logical Volume55
3.6. Activating and Mounting the Original Logical Volume55

4. Removing a Disk from a Logical Volume ...56
4.1. Moving Extents to Existing Physical Volumes56
4.2. Moving Extents to a New Disk ...57

6. LVM Troubleshooting ..59
1. Troubleshooting Diagnostics ..59
2. Displaying Information on Failed Devices ...59
3. Recovering from LVM Mirror Failure ...60

LVM Administrator's Guide

v

4. Recovering Physical Volume Metadata ...63
5. Replacing a Missing Physical Volume ..64
6. Removing Lost Physical Volumes from a Volume Group64
7. Insufficient Free Extents for a Logical Volume ...65

7. LVM Administration with the LVM GUI ..66
A. The Device Mapper ..67
B. The LVM Configuration Files ...68

1. The LVM Configuration Files ..68
2. Sample lvm.conf File ...68

C. LVM Object Tags ..75
1. Adding and Removing Object Tags ..75
2. Host Tags ...75
3. Controlling Activation with Tags ...76

D. LVM Volume Group Metadata ...77
1. The Physical Volume Label ...77
2. Metadata Contents ..77
3. Sample Metadata ..78

Index ...81

LVM Administrator's Guide

vi

Introduction

1. About This Guide
This book describes the Logical Volume Manager (LVM), including information on running LVM
in a clustered environment. The content of this document is specific to the LVM2 release.

2. Audience
This book is intended to be used by system administrators managing systems running the Linux
operating system. It requires familiarity with Red Hat Enterprise Linux 5 and GFS file system ad-
ministration.

3. Software Versions

Software Description

RHEL5 refers to RHEL5 and higher

GFS refers to GFS for RHEL5 and higher

Table 1. Software Versions

4. Related Documentation
For more information about using Red Hat Enterprise Linux, refer to the following resources:

• Red Hat Enterprise Linux Installation Guide — Provides information regarding installation of
Red Hat Enterprise Linux 5.

• Red Hat Enterprise Linux Deployment Guide — Provides information regarding the deploy-
ment, configuration and administration of Red Hat Enterprise Linux 5.

For more information about Red Hat Cluster Suite for Red Hat Enterprise Linux 5, refer to the
following resources:

• Red Hat Cluster Suite Overview — Provides a high level overview of the Red Hat Cluster
Suite.

• Configuring and Managing a Red Hat Cluster — Provides information about installing, con-
figuring and managing Red Hat Cluster components.

• Global File System: Configuration and Administration — Provides information about in-
stalling, configuring, and maintaining Red Hat GFS (Red Hat Global File System).

vii

• Using GNBD with Global File System — Provides an overview on using Global Network
Block Device (GNBD) with Red Hat GFS.

• Linux Virtual Server Administration — Provides information on configuring high-performance
systems and services with the Linux Virtual Server (LVS).

• Red Hat Cluster Suite Release Notes — Provides information about the current release of
Red Hat Cluster Suite.

5. Document Conventions
Certain words in this manual are represented in different fonts, styles, and weights. This high-
lighting indicates that the word is part of a specific category. The categories include the follow-
ing:

Courier font

Courier font represents commands, file names and paths, and prompts .

When shown as below, it indicates computer output:

Desktop about.html logs paulwesterberg.png
Mail backupfiles mail reports

bold Courier font

Bold Courier font represents text that you are to type, such as: service jonas start

If you have to run a command as root, the root prompt (#) precedes the command:

gconftool-2

italic Courier font

Italic Courier font represents a variable, such as an installation directory: install_dir/bin/

bold font
Bold font represents application programs and text found on a graphical interface.

When shown like this: OK , it indicates a button on a graphical application interface.

Additionally, the manual uses different strategies to draw your attention to pieces of information.
In order of how critical the information is to you, these items are marked as follows:

Note

A note is typically information that you need to understand the behavior of the sys-
tem.

5. Document Conventions

viii

Tip

A tip is typically an alternative way of performing a task.

Important

Important information is necessary, but possibly unexpected, such as a configura-
tion change that will not persist after a reboot.

Caution

A caution indicates an act that would violate your support agreement, such as re-
compiling the kernel.

Warning

A warning indicates potential data loss, as may happen when tuning hardware for
maximum performance.

5. Document Conventions

ix

Chapter 1. The LVM Logical Volume
Manager

This chapter provides a high-level overview of the components of the Logical Volume Manager
(LVM).

1. Logical Volumes
Volume management creates a layer of abstraction over physical storage, allowing you to cre-
ate logical storage volumes. This provides much greater flexibility in a number of ways than us-
ing physical storage directly.

A logical volume provides storage virtualization. With a logical volume, you are not restricted to
physical disk sizes. In addition, the hardware storage configuration is hidden from the software
so it can be resized and moved without stopping applications or unmounting file systems. This
can reduce operational costs.

Logical volumes provide the following advantages over using physical storage directly:

• Flexible capacity

When using logical volumes, file systems can extend across multiple disks, since you can
aggregate disks and partitions into a single logical volume.

• Resizeable storage pools

You can extend logical volumes or reduce logical volumes in size with simple software com-
mands, without reformatting and repartitioning the underlying disk devices.

• Online data relocation

To deploy newer, faster, or more resilient storage subsystems, you can move data will your
system is active. Data can be rearranged on disks while the disks are in use. For example,
you can empty a hot-swappable disk before removing it.

• Convenient device naming

Logical storage volumes can be managed in user-defined groups, which you can name ac-
cording to your convenience.

• Disk striping

You can create a logical volume that stripes data across two or more disks. This can dramat-
ically increase throughput.

• Mirroring volumes

Logical volumes provide a convenient way to configure a mirror for your data.

• Volume Snapshots

1

Using logical volumes, you can take device snapshots for consistent backups or to test the
effect of changes without affecting the real data.

The implementation of these features in LVM is described in the remainder of this document.

2. LVM Architecture Overview
For the RHEL 4 release of the Linux operating system, the original LVM1 logical volume man-
ager was replaced by LVM2, which has a more generic kernel framework than LVM1. LVM2
provides the following improvements over LVM1:

• flexible capacity

• more efficient metadata storage

• better recovery format

• new ASCII metadata format

• atomic changes to metadata

• redundant copies of metadata

LVM2 is backwards compatible with LVM1, with the exception of snapshot and cluster support.
You can convert a volume group from LVM1 format to LVM2 format with the vgconvert com-
mand. For information on converting LVM metadata format, see the vgconvert(8) man page.

The underlying physical storage unit of an LVM logical volume is a block device such as a parti-
tion or whole disk. This device is initialized as an LVM physical volume (PV).

To create an LVM logical volume, the physical volumes are combined into a volume group (VG).
This creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated. This
process is analogous to the way in which disks are divided into partitions. A logical volume is
used by file systems and applications (such as databases).

Figure 1.1, “LVM Logical Volume Components” shows the components of a simple LVM logical
volume:

2. LVM Architecture Overview

2

Figure 1.1. LVM Logical Volume Components

For detailed information on the components of an LVM logical volume, see Chapter 2, LVM
Components.

3. Running LVM in a Cluster
The Clustered Logical Volume Manager (CLVM) is a set of clustering extensions to LVM. These
extensions allow a cluster of computers to manage shared storage (for example, on a SAN) us-
ing LVM.

The clmvd daemon is the key clustering extension to LVM. The clvmd daemon runs in each
cluster computer and distributes LVM metadata updates in a cluster, presenting each cluster
computer with the same view of the logical volumes.

Figure 1.2, “CLVM Overview” shows a CLVM overview in a Red Hat cluster.

3. Running LVM in a Cluster

3

Figure 1.2. CLVM Overview

Logical volumes created with CLVM on shared storage are visible to all computers that have ac-
cess to the shared storage.

CLVM allows a user to configure logical volumes on shared storage by locking access to physic-
al storage while a logical volume is being configured. CLVM uses the locking services provided
by the high availability symmetric infrastructure.

Note

CLVM requires changes to the lvm.conf file for cluster-wide locking. For informa-
tion on configuring the lvm.conf file to support CLVM, see Section 1, “Creating
LVM Volumes in a Cluster”.

You configure LVM volumes for use in a cluster with the standard set of LVM commands or the
LVM graphical user interface, as described in Chapter 4, LVM Administration with CLI Com-
mands and Chapter 7, LVM Administration with the LVM GUI.

For information on installing LVM in a Red Hat Cluster, see Configuring and Managing a Red
Hat Cluster.

4. Document Overview

4. Document Overview

4

This remainder of this document includes the following chapters:

• Chapter 2, LVM Components describes the components that make up an LVM logical
volume.

• Chapter 3, LVM Administration Overview provides an overview of the basic steps you per-
form to configure LVM logical volumes, whether you are using the LVM Command Line Inter-
face (CLI) commands or the LVM Graphical User Interface (GUI).

• Chapter 4, LVM Administration with CLI Commands summarizes the individual administrat-
ive tasks you can perform with the LVM CLI commands to create and maintain logical
volumes.

• Chapter 5, LVM Configuration Examples provides a variety of LVM configuration examples.

• Chapter 6, LVM Troubleshooting provide instructions for troubleshooting a variety of LVM is-
sues.

• Chapter 7, LVM Administration with the LVM GUI summarizes the operating of the LVM GUI.

• Appendix A, The Device Mapper describes the Device Mapper that LVM uses to map logical
and physical volumes.

• Appendix B, The LVM Configuration Files describes the LVM configuration files.

• Appendix C, LVM Object Tags describes LVM object tags and host tags.

• Appendix D, LVM Volume Group Metadata describes LVM volume group metadata, and in-
cludes a sample copy of metadata for an LVM volume group.

4. Document Overview

5

Chapter 2. LVM Components
This chapter describes the components of an LVM Logical volume.

1. Physical Volumes
The underlying physical storage unit of an LVM logical volume is a block device such as a parti-
tion or whole disk. To use the device for an LVM logical volume the device must be initialized as
a physical volume (PV). Initializing a block device as a physical volume places a label near the
start of the device.

By default, the LVM label is placed in the second 512-byte sector. You can overwrite this default
by placing the label on any of the first 4 sectors. This allows LVM volumes to co-exist with other
users of these sectors, if necessary.

An LVM label provides correct identification and device ordering for a physical device, since
devices can come up in any order when the system is booted. An LVM label remains persistent
across reboots and throughout a cluster.

The LVM label identifies the device as an LVM physical volume. It contains a random unique
identifier (the UUID) for the physical volume. It also stores the size of the block device in bytes,
and it records where the LVM metadata will be stored on the device.

The LVM metadata contains the configuration details of the LVM volume groups on your sys-
tem. By default, an identical copy of the metadata is maintained in every metadata area in every
physical volume within the volume group. LVM metadata is small and stored as ASCII.

Currently LVM allows you to store 0, 1 or 2 identical copies of its metadata on each physical
volume. The default is 1 copy. Once you configure the number of metadata copies on the phys-
ical volume, you cannot change that number at a later time. The first copy is stored at the start
of the device, shortly after the label. If there is a second copy, it is placed at the end of the
device. If you accidentally overwrite the area at the beginning of your disk by writing to a differ-
ent disk than you intend, a second copy of the metadata at the end of the device will allow you
to recover the metadata.

For detailed information about the LVM metadata and changing the metadata parameters, see
Appendix D, LVM Volume Group Metadata.

1.1. LVM Physical Volume Layout

Figure 2.1, “Physical Volume layout” shows the layout of an LVM physical volume. The LVM la-
bel is on the second sector, followed by the metadata area, followed by the usable space on the
device.

Note

In the Linux kernel (and throughout this document), sectors are considered to be

6

512 bytes in size.

Figure 2.1. Physical Volume layout

1.2. Multiple Partitions on a Disk

LVM allows you to create physical volumes out of disk partitions. It is generally recommended
that you create a single partition that covers the whole disk to label as an LVM physical volume
for the following reasons:

• Administrative convenience

It is easier to keep track of the hardware in a system if each real disk only appears once.
This becomes particularly true if a disk fails. In addition, multiple physical volumes on a
single disk may cause a kernel warning about unknown partition types at boot-up.

• Striping performance

LVM can not tell that two physical volumes are on the same physical disk. If you create a
striped logical volume when two physical volumes are on the same physical disk, the stripes
could be on different partitions on the same disk. This would result in a decrease in perform-
ance rather than an increase.

Although it it is not recommended, there may be specific circumstances when you will need to
divide a disk into separate LVM physical volumes. For example, on a system with few disks it
may be necessary to move data around partitions when you are migrating an existing system to
LVM volumes. Additionally, if you have a very large disk and want to have more than one
volume group for administrative purposes then it is necessary to partition the disk. If you do
have a disk with more than one partition and both of those partitions are in the same volume
group, take care to specify which partitions are to be included in a logical volume when creating

1.2. Multiple Partitions on a Disk

7

striped volumes.

2. Volume Groups
Physical volumes are combined into volume groups (VGs). This creates a pool of disk space out
of which logical volumes can be allocated.

Within a volume group, the disk space available for allocation is divided into units of a fixed-size
called extents. An extent is the smallest unit of space that can be allocated, Within a physical
volume, extents are referred to as physical extents.

A logical volume is allocated into logical extents of the same size as the physical extents. The
extent size is thus the same for all logical volumes in the volume group. The volume group
maps the logical extents to physical extents.

3. LVM Logical Volumes
In LVM, a volume group is divided up into logical volumes. There are three types of LVM logical
volumes: linear volumes, striped volumes, and mirrored volumes. These are described in the
following sections.

3.1. Linear Volumes

A linear volume aggregates multiple physical volumes into one logical volume. For example, if
you have two 60GB disks, you can create a 120GB logical volume. The physical storage is con-
catenated.

Creating a linear volume assigns a range of physical extents to an area of a logical volume in
order. For example, as shown in Figure 2.2, “Extent Mapping” logical extents 1 to 99 could map
to one physical volume and logical extents 100 to 198 could map to a second physical volume.
From the point of view of the application, there is one device that is 198 extents in size.

2. Volume Groups

8

Figure 2.2. Extent Mapping

The physical volumes that make up a logical volume do not have to be the same size. Fig-
ure 2.3, “Linear Volume with Unequal Physical Volumes” shows volume group VG1 with a physic-
al extent size of 4MB. This volume group includes 2 physical volumes named PV1 and PV2. The
physical volumes are divided into 4MB units, since that is the extent size. In this example, PV1 is
100 extents in size (400MB) and PV2 is 200 extents in size (800MB). You can create a linear
volume any size between 1 and 300 extents (4MB to 1200MB). In this example, the linear
volume named LV1 is 300 extents in size.

3.1. Linear Volumes

9

Figure 2.3. Linear Volume with Unequal Physical Volumes

You can configure more than one linear logical volume of whatever size you desire from the
pool of physical extents. Figure 2.4, “Multiple Logical Volumes” shows the same volume group
as in Figure 2.3, “Linear Volume with Unequal Physical Volumes”, but in this case two logical
volumes have been carved out of the volume group: LV1, which is 250 extents in size (1000MB)
and LV2 which is 50 extents in size (200MB).

Figure 2.4. Multiple Logical Volumes

3.2. Striped Logical Volumes

10

3.2. Striped Logical Volumes

When you write data to an LVM logical volume, the file system lays the data out across the un-
derlying physical volumes. You can control the way the data is written to the physical volumes
by creating a striped logical volume. For large sequential reads and writes, this can improve the
efficiency of the data I/O.

Striping enhances performance by writing data to a predetermined number of physical volumes
in round-round fashion. With striping, I/O can be done in parallel. In some situations, this can
result in near-linear performance gain for each additional physical volume in the stripe.

The following illustration shows data being striped across three physical volumes. In this figure:

• the first stripe of data is written to PV1

• the second stripe of data is written to PV2

• the third stripe of data is written to PV3

• the fourth stripe of data is written to PV1

In a striped logical volume, the size of the stripe cannnot exceed the size of an extent.

Figure 2.5. Striping Data Across Three PVs

Striped logical volumes can be extended by concatenating another set of devices onto the end
of the first set. In order extend a striped logical volume, however, there must be enough free

3.2. Striped Logical Volumes

11

space on the underlying physical volumes that make up the volume group to support the stripe.
For example, if you have a two-way stripe that uses up an entire volume group, adding a single
physical volume to the volume group will not enable you to extend the stripe. Instead, you must
add at least two physical volumes to the volume group. For more information on extending a
striped volume, see Section 4.9, “Extending a Striped Volume”.

3.3. Mirrored Logical Volumes

A mirror maintains identical copies of data on different devices. When data is written to one
device, it is written to a second device as well, mirroring the data. This provides protection for
device failures. When one leg of a mirror fails, the logical volume becomes a linear volume and
can still be accessed.

LVM supports mirrored volumes. When you create a mirrored logical volume, LVM ensures that
data written to an underlying physical volume is mirrored onto a separate physical volume. With
LVM, you can create mirrored logical volumes with multiple mirrors.

An LVM mirror divides the device being copied into regions that are typically 512KB in size.
LVM maintains a small log which it uses to keep track of which regions are in sync with the mir-
ror or mirrors. This log can be kept on disk, which will keep it persistent across reboots, or it can
be maintained in memory.

Figure 2.6, “Mirrored Logical Volume” shows a mirrored logical volume with one mirror. In this
configuration, the log is maintained on disk.

Figure 2.6. Mirrored Logical Volume

3.3. Mirrored Logical Volumes

12

Note

Mirrored logical volumes are not currently supported in a cluster.

For information on creating and modifying mirrors, see Section 4.1.3, “Creating Mirrored
Volumes”.

3.4. Snapshot Volumes

The LVM snapshot feature provides the ability to create virtual images of a device at a particular
instant without causing a service interruption. When a change is made to the original device (the
origin) after a snapshot is taken, the snapshot feature makes a copy of the changed data area
as it was prior to the change so that it can reconstruct the state of the device.

Note

LVM snapshots are not supported across the nodes in a cluster.

Because a snapshot copies only the data areas that change after the snapshot is created, the
snapshot feature requires a minimal amount of storage. For example, with a rarely updated ori-
gin, 3-5 % of the origin's capacity is sufficient to maintain the snapshot.

Note

Snapshot copies of a file system are virtual copies, not actual media backup for a
file system. Snapshots do not provide a substitute for a backup procedure.

If a snapshot runs full, the snapshot is dropped. This is to be sure that there is enough space for
the origin file system. You should regularly monitor the size of the snapshot. Snapshots are fully
resizeable, however, so if you have the storage capacity you can increase the size of the snap-
shot volume to prevent it from getting dropped. Conversely, if you find that the snapshot volume
is larger than you need, you can reduce the size of the volume to free up space that is needed
by other logical volumes.

When you create a snapshot file system, full read and write access to the origin stays possible.
If a chunk on a snapshot is changed, that chunk is marked and never gets copied from the ori-
ginal volume.

There are several uses for the snapshot feature:

• Most typically, a snapshot is taken when you need to perform a backup on a logical volume
without halting the live system that is continuously updating the data.

3.4. Snapshot Volumes

13

• You can execute the fsck command on a snapshot file system to check the file system integ-
rity and determine whether the original file system requires file system repair.

• Because the snapshot is read/write, you can test applications against production data by
taking a snapshot and running tests against the snapshot, leaving the real data untouched.

• You can create volumes for use with the Xen virtual machine monitor. You can use the snap-
shot feature to create a disk image, snapshot it, and modify the snapshot for a particular
domU instance. You can then create another snapshot and modify it for another domU in-
stance. Since the only storage used is chunks that were changed on the origin or snapshot,
the majority of the volume is shared.

3.4. Snapshot Volumes

14

Chapter 3. LVM Administration
Overview

This chapter provides an overview of the administrative procedures you use to configure LVM
logical volumes. This chapter is intended to provide a general understanding of the steps in-
volved. For specific step-by-step examples of common LVM configuration procedures, see
Chapter 5, LVM Configuration Examples.

For descriptions of the CLI commands you can use to perform LVM administration, see
Chapter 4, LVM Administration with CLI Commands. Alternately, you can use the LVM GUI,
which is described in Chapter 7, LVM Administration with the LVM GUI.

1. Creating LVM Volumes in a Cluster
Creating LVM logical volumes in a cluster environment is identical to creating LVM logical
volumes on a single node. There is no difference in the LVM commands themselves, or in the
LVM GUI interface. In order to enable the LVM volumes you are creating in a cluster, the cluster
infrastructure must be running and the cluster must be quorate.

For information on how to set up the cluster infrastructure, see Configuring and Managing a Red
Hat Cluster.

2. Logical Volume Creation Overview
The following is a summary of the steps to perform to create an LVM logical volume.

1. Initialize the partitions you will use for the LVM volume as physical volumes (this labels
them).

2. Create a volume group.

3. Create a logical volume.

After creating the logical volume you can create and mount the file system. The examples in this
document use GFS file systems.

1. Create a GFS file system on the logical volume with the gfs_mkfs command.

2. Create a new mount point with the mkdir command. In a clustered system, create the
mount point on all nodes in the cluster.

3. Mount the file system. You may want to add a line to the fstab file for each node in the sys-
tem.

Alternately, you can create and mount the GFS file system with the LVM GUI.

Creating the LVM volume is machine independent, since the storage area for LVM setup inform-
ation is on the physical volumes and not the machine where the volume was created. Servers

15

that use the storage have local copies, but can recreate that from what is on the physical
volumes. You can attach physical volumes to a different server if the LVM versions are compat-
ible.

3. Growing a File System on a Logical
Volume
To grow a file system on a logical volume, perform the following steps:

1. Make a new physical volume.

2. Extend the volume group that contains the logical volume with the file system you are grow-
ing to include the new physical volume.

3. Extend the logical volume to include the new physical volume.

4. Grow the file system.

If you have sufficient unallocated space in the volume group, you can use that space to extend
the logical volume instead of performing steps 1 and 2.

4. Logical Volume Backup
Metadata backups and archives are automatically created on every volume group and logical
volume configuration change unless disabled in the lvm.conf file. By default, the metadata
backup is stored in the /etc/lvm/backup file and the metadata archives are stored in the /

etc/lvm/archive file. How long the the metadata archives stored in the /etc/lvm/archive file are
kept and how many archive files are kept is determined by parameters you can set in the
lvm.conf file. A daily system backup should include the contents of the /etc/lvm directory in the
backup.

Note that a metadata backup does not back up the user and system data contained in the logic-
al volumes.

You can manually back up the metadata to the /etc/lvm/backup file with the vgcfgbackup com-
mand. You can restore metadata with the vgcfgrestore command. The vgcfgbackup and vgcf-

grestore commands are described in Section 3.11, “Backing Up Volume Group Metadata”.

5. Logging
All message output passes through a logging module with independent choices of logging levels
for:

• standard output/error

• syslog

• log file

3. Growing a File System on a Logical Volume

16

• external log function

The logging levels are set in the /etc/lvm/lvm.conf file, which is described in Appendix B, The
LVM Configuration Files.

5. Logging

17

Chapter 4. LVM Administration with
CLI Commands

This chapter summarizes the individual administrative tasks you can perform with the LVM
Command Line Interface (CLI) commands to create and maintain logical volumes.

1. Using CLI Commands
There are several general features of all LVM CLI commands.

When sizes are required in a command line argument, units can always be specified explicitly. If
you do not specify a unit, then a default is assumed, usually KB or MB. LVM CLI commands do
not accept fractions.

When specifying units in a command line argument, LVM is case-insensitive; specifying M or m
is equivalent, for example, and powers of 2 (multiples of 1024) are used. However, when spe-
cifying the --units argument in a command, lower-case indicates that units are in multiples of
1024 while upper-case indicates that units are in multiples of 1000.

Where commands take volume group or logical volume names as arguments, the full path name
is optional. A logical volume called lvol0 in a volume group called vg0 can be specified as
vg0/lvol0. Where a list of volume groups is required but is left empty, a list of all volume groups
will be substituted. Where a list of logical volumes is required but a volume group is given, a list
of all the logical volumes in that volume group will be substituted. For example, the lvdisplay

vg0 command will display all the logical volumes in volume group vg0.

All LVM commands accept a -v argument, which can be entered multiple times to increase the
output verbosity. For example, the following examples shows the default output of the lvcreate

command.

lvcreate -L 50MB new_vg
Rounding up size to full physical extent 52.00 MB
Logical volume "lvol0" created

The following command shows the output of the lvcreate command with the -v argument.

lvcreate -v -L 50MB new_vg
Finding volume group "new_vg"

Rounding up size to full physical extent 52.00 MB
Archiving volume group "new_vg" metadata (seqno 4).
Creating logical volume lvol0
Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).
Found volume group "new_vg"
Creating new_vg-lvol0
Loading new_vg-lvol0 table
Resuming new_vg-lvol0 (253:2)
Clearing start of logical volume "lvol0"
Creating volume group backup "/etc/lvm/backup/new_vg" (seqno 5).

Logical volume "lvol0" created

You could also have used the -vv, -vvv or the -vvvv argument to display increasingly more de-

18

tails about the command execution. The -vvvv argument provides the maximum amount of in-
formation at this time. The following example shows only the first few lines of output for the
lvcreate command with the -vvvv argument specified.

lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:913 Processing: lvcreate -vvvv -L 50MB new_vg
#lvmcmdline.c:916 O_DIRECT will be used
#config/config.c:864 Setting global/locking_type to 1
#locking/locking.c:138 File-based locking selected.
#config/config.c:841 Setting global/locking_dir to /var/lock/lvm
#activate/activate.c:358 Getting target version for linear
#ioctl/libdm-iface.c:1569 dm version OF [16384]
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#activate/activate.c:358 Getting target version for striped
#ioctl/libdm-iface.c:1569 dm versions OF [16384]
#config/config.c:864 Setting activation/mirror_region_size to 512
...

You can display help for any of the LVM CLI commands with the --help argument of the com-
mand.

commandname --help

To display the man page for a command, execute the man command:

man commandname

The man lvm command provides general online information about LVM.

All LVM objects are referenced internally by a UUID, which is assigned when you create the ob-
ject. This can be useful in a situation where you remove a physical volume called /dev/sdf

which is part of a volume group and, when you plug it back in, you find that it is now /dev/sdk.
LVM will still find the physical volume because it identifies the physical volume by its UUID and
not its device name. For information on specifying the UUID of a physical volume when creating
a physical volume, see see Section 4, “Recovering Physical Volume Metadata”.

2. Physical Volume Administration
This section describes the commands that perform the various aspects of physical volume ad-
ministration.

2.1. Creating Physical Volumes

The following subsections describe the commands used for creating physical volumes.

2.1.1. Setting the Partition Type

If you are using a whole disk device for your physical volume, the disk must have no partition ta-
ble. For DOS disk partitions, the partition id should be set to 0x8e using the fdisk or cfdisk
command or an equivalent. For whole disk devices only the partition table must be erased,
which will effectively destroy all data on that disk. You can remove an existing partition table by
zeroing the first sector with the following command:

2. Physical Volume Administration

19

dd if=/dev/zero of=PhysicalVolume bs=512 count=1

2.1.2. Initializing Physical Volumes

Use the pvcreate command to initialize a block device to be used as a physical volume. Initializ-
ation is analogous to formatting a file system.

The following command initializes /dev/sdd1, /dev/sde1, and /dev/sdf1 for use as LVM physical
volumes.

pvcreate /dev/sdd1 /dev/sde1 /dev/sdf1

To initialize partitions rather than whole disks: run the pvcreate command on the partition. The
following example initializes /dev/hdb1 as an LVM physical volume for later use as part of an
LVM logical volume.

pvcreate /dev/hdb1

2.1.3. Scanning for Block Devices

You can scan for block devices that may be used as physical volumes with the lvmdiskscan

command, as shown in the following example.

lvmdiskscan
/dev/ram0 [16.00 MB]
/dev/sda [17.15 GB]
/dev/root [13.69 GB]
/dev/ram [16.00 MB]
/dev/sda1 [17.14 GB] LVM physical volume
/dev/VolGroup00/LogVol01 [512.00 MB]
/dev/ram2 [16.00 MB]
/dev/new_vg/lvol0 [52.00 MB]
/dev/ram3 [16.00 MB]
/dev/pkl_new_vg/sparkie_lv [7.14 GB]
/dev/ram4 [16.00 MB]
/dev/ram5 [16.00 MB]
/dev/ram6 [16.00 MB]
/dev/ram7 [16.00 MB]
/dev/ram8 [16.00 MB]
/dev/ram9 [16.00 MB]
/dev/ram10 [16.00 MB]
/dev/ram11 [16.00 MB]
/dev/ram12 [16.00 MB]
/dev/ram13 [16.00 MB]
/dev/ram14 [16.00 MB]
/dev/ram15 [16.00 MB]
/dev/sdb [17.15 GB]
/dev/sdb1 [17.14 GB] LVM physical volume
/dev/sdc [17.15 GB]
/dev/sdc1 [17.14 GB] LVM physical volume
/dev/sdd [17.15 GB]
/dev/sdd1 [17.14 GB] LVM physical volume
7 disks
17 partitions
0 LVM physical volume whole disks
4 LVM physical volumes

2.2. Displaying Physical Volumes

20

2.2. Displaying Physical Volumes

There are three commands you can use to display properties of LVM physical volumes: pvs,
pvdisplay, and pvscan.

The pvs command provides physical volume information in a configurable form, displaying one
line per physical volume. The pvs command provides a great deal of format control, and is use-
ful for scripting. For information on using the pvs command to customize your output, see Sec-
tion 9, “Customized Reporting for LVM”.

The pvdisplay command provides a verbose multi-line output for each physical volume. It dis-
plays physical properties (size, extents, volume group, etc.) in a fixed format.

The following example shows the output of the pvdisplay command for a single physical
volume.

pvdisplay
--- Physical volume ---
PV Name /dev/sdc1
VG Name new_vg
PV Size 17.14 GB / not usable 3.40 MB
Allocatable yes
PE Size (KByte) 4096
Total PE 4388
Free PE 4375
Allocated PE 13
PV UUID Joqlch-yWSj-kuEn-IdwM-01S9-XO8M-mcpsVe

The pvscan command scans all supported LVM block devices in the system for physical
volumes.

The following command shows all physical devices found:

pvscan
PV /dev/sdb2 VG vg0 lvm2 [964.00 MB / 0 free]
PV /dev/sdc1 VG vg0 lvm2 [964.00 MB / 428.00 MB free]
PV /dev/sdc2 lvm2 [964.84 MB]
Total: 3 [2.83 GB] / in use: 2 [1.88 GB] / in no VG: 1 [964.84 MB]

You can define a filter in the lvm.conf so that this command will avoid scanning specific physical
volumes. For information on using filters to control which devices are scanned, see Section 6,
“Controlling LVM Device Scans with Filters”.

2.3. Preventing Allocation on a Physical Volume

You can prevent allocation of physical extents on the free space of one or more physical
volumes with the pvchange command. This may be necessary if there are disk errors, or if you
will be removing the physical volume.

The following command disallows the allocation of physical extents on /dev/sdk1.

pvchange -x n /dev/sdk1

You can also use the -xy arguments of the pvchange command to allow allocation where it had

2.3. Preventing Allocation on a Physical Volume

21

previously been disallowed.

2.4. Resizing a Physical Volume

If you need to change the size of an underlying block device for any reason, use the pvresize

command to update LVM with the new size. You can execute this command while LVM is using
the physical volume.

2.5. Removing Physical Volumes

If a device is no longer required for use by LVM, you can remove the LVM label with the pvre-

move command. Executing the pvremove command zeroes the LVM metadata on an empty phys-
ical volume.

If the physical volume you want to remove is currently part of a volume group, you must remove
it from the volume group with the vgreduce command, as described in Section 3.5, “Removing
Physical Volumes from a Volume Group”.

pvremove /dev/ram15
Labels on physical volume "/dev/ram15" successfully wiped

3. Volume Group Administration
This section describes the commands that perform the various aspects of volume group admin-
istration.

3.1. Creating Volume Groups

To create a volume group from one or more physical volumes, use the vgcreate command. The
vgcreate command creates a new volume group by name and adds at least one physical
volume to it.

The following command creates a volume group named vg1 that contains physical volumes /

dev/sdd1 and /dev/sde1.

vgcreate vg1 /dev/sdd1 /dev/sde1

When physical volumes are used to create a volume group, its disk space is divided into 4MB
extents, by default. This extent is the minimum amount by which the logical volume may be in-
creased or decreased in size. Large numbers of extents will have no impact on I/O performance
of the logical volume.

You can specify the extent size with the vgcreate command if the default is not suitable with the
-s argument. You can put limits on the number of physical or logical volumes the volume group
can have by using the -p and -l arguments of the vgcreate command.

By default, a volume group allocates physical extents according to common-sense rules such as
not placing parallel stripes on the same physical volume. This is the normal allocation policy.
You can use the --alloc argument of the vgcreate command to specify an allocation policy of
contiguous, anywhere, or cling.

2.4. Resizing a Physical Volume

22

The contiguous policy requires that new extents are adjacent to existing extents. If there are suf-
ficient free extents to satisfy an allocation request but a normal allocation policy would not use
them, the anywhere allocation policy will, even if that reduces performance by placing two stripes
on the same physical volume. The cling policy places new extents on the same physical
volume as existing extents in the same stripe of the logical volume. These policies can be
changed using the vgchange command.

In general, allocation policies other than normal are required only in special cases where you
need to specify unusual or nonstandard extent allocation.

LVM volume groups and underlying logical volumes are included in the device special file direct-
ory tree in the /dev directory with the following layout:

/dev/vg/lv/

For example, if you create two volume groups myvg1 and myvg2, each with three logical volumes
named lvo1, lvo2, and lvo3, this create six device special files:

/dev/myvg1/lv01
/dev/myvg1/lv02
/dev/myvg1/lv03
/dev/myvg2/lv01
/dev/myvg2/lv02
/dev/myvg2/lv03

The maximum device size with LVM is 8 Exabytes on 64-bit CPUs.

3.2. Adding Physical Volumes to a Volume Group

To add additional physical volumes to an existing volume group, use the vgextend command.
The vgextend command increases a volume group's capacity by adding one or more free phys-
ical volumes.

The following command adds the physical volume /dev/sdf1 to the volume group vg1.

vgextend vg1 /dev/sdf1

3.3. Displaying Volume Groups

There are two commands you can use to display properties of LVM volume groups: vgs and vg-

display.

The vgscan command will also display the volume groups, although its primary purpose is to
scan all the disks for volume groups and rebuild the LVM cache file. For information on the vg-

scan command, see Section 3.4, “Scanning Disks for Volume Groups to Build the Cache File”.

The vgs command provides volume group information in a configurable form, displaying one line
per volume group. The vgs command provides a great deal of format control, and is useful for
scripting. For information on using the vgs command to customize your output, see Section 9,
“Customized Reporting for LVM”.

3.2. Adding Physical Volumes to a Volume Group

23

The vgdisplay command displays volume group properties (such as size, extents, number of
physical volumes, etc.) in a fixed form. The following example shows the output of a vgdisplay

command for the volume group new_vg. If you do not specify a volume group, all existing volume
groups are displayed.

vgdisplay new_vg
--- Volume group ---
VG Name new_vg
System ID
Format lvm2
Metadata Areas 3
Metadata Sequence No 11
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 1
Open LV 0
Max PV 0
Cur PV 3
Act PV 3
VG Size 51.42 GB
PE Size 4.00 MB
Total PE 13164
Alloc PE / Size 13 / 52.00 MB
Free PE / Size 13151 / 51.37 GB
VG UUID jxQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

3.4. Scanning Disks for Volume Groups to Build the Cache
File

The vgscan command scans all supported disk devices in the system looking for LVM physical
volumes and volume groups. This builds the LVM cache in the /etc/lvm/.cache file, which main-
tains a listing of current LVM devices.

LVM runs the vgscan command automatically at system startup and at other times during LVM
operation, such as when you execute a vgcreate command or when LVM detects an inconsist-
ency. You may need to run the vgscan command manually when you change your hardware
configuration, causing new devices to be visible to the system that were not present at system
bootup. This may be necessary, for example, when you add new disks to the system on a SAN
or hotplug a new disk that has been labeled as a physical volume.

You can define a filter in the lvm.conf file to restrict the scan to avoid specific devices. For in-
formation on using filters to control which devices are scanned, see Section 6, “Controlling LVM
Device Scans with Filters”.

The following example shows the output of a vgscan command.

vgscan
Reading all physical volumes. This may take a while...
Found volume group "new_vg" using metadata type lvm2
Found volume group "officevg" using metadata type lvm2

3.5. Removing Physical Volumes from a Volume Group

To remove unused physical volumes from a volume group, use the vgreduce command. The

3.4. Scanning Disks for Volume Groups to Build the Cache File

24

vgreduce command shrinks a volume group's capacity by removing one or more empty physical
volumes. This frees those physical volumes to be used in different volume groups or to be re-
moved from the system.

Before removing a physical volume from a volume group, you can make sure that the physical
volume is not used by any logical volumes by using the pvdisplay command.

pvdisplay /dev/hda1

-- Physical volume ---
PV Name /dev/hda1
VG Name myvg
PV Size 1.95 GB / NOT usable 4 MB [LVM: 122 KB]
PV# 1
PV Status available
Allocatable yes (but full)
Cur LV 1
PE Size (KByte) 4096
Total PE 499
Free PE 0
Allocated PE 499
PV UUID Sd44tK-9IRw-SrMC-MOkn-76iP-iftz-OVSen7

If the physical volume is still being used you will have to migrate the data to another physical
volume using the pvmove command. Then use the vgreduce command to remove the physical
volume:

The following command removes the physical volume /dev/hda1 from the volume group
my_volume_group.

vgreduce my_volume_group /dev/hda1

3.6. Changing the Parameters of a Volume Group

There are several volume group parameters that you can change for an existing volume group
with the vgchange command. Primarily, however, this command is used to deactivate and activ-
ate volume groups, as described in Section 3.7, “Activating and Deactivating Volume Groups”,

The following command changes the maximum number of logical volumes of volume group vg00

to 128.

vgchange -l 128 /dev/vg00

For a description of the volume group parameters you can change with the vgchange command,
see the vgchange(8) man page.

3.7. Activating and Deactivating Volume Groups

When you create a volume group it is, by default, activated. This means that the logical volumes
in that group are accessible and subject to change.

There are various circumstances for which you you need to make a volume group inactive and
thus unknown to the kernel. To deactivate or activate a volume group, use the -a (--available)
argument of the vgchange command.

3.6. Changing the Parameters of a Volume Group

25

The following example deactivates the volume group my_volume_group.

vgchange -a n my_volume_group

If clustered locking is enabled, add ’e’ to activate or deactivate a volume group exclusively on
one node or ’l’ to activate or/deactivate a volume group only on the local node. Logical volumes
with single-host snapshots are always activated exclusively because they can only be used on
one node at once.

You can deactivate individual logical volumes with the lvchange command, as described in Sec-
tion 4.4, “Changing the Parameters of a Logical Volume Group”, For information on activating
logical volumes on individual nodes in a cluster, see Section 8, “Activating Logical Volumes on
Individual Nodes in a Cluster”.

3.8. Removing Volume Groups

To remove a volume group that contains no logical volumes, use the vgremove command.

vgremove officevg
Volume group "officevg" successfully removed

3.9. Splitting a Volume Group

To split the physical volumes of a volume group and create a new volume group, use the vgs-

plit command.

Logical volumes cannot be split between volume groups. Each existing logical volume must be
entirely on the physical volumes forming either the old or the new volume group. If necessary,
however, you can use the pvmove command to force the split.

The following example splits off the new volume group smallvg from the original volume group
bigvg.

vgsplit bigvg smallvg /dev/ram15
Volume group "smallvg" successfully split from "bigvg"

3.10. Combining Volume Groups

Two combine two volume groups into a single volume group, use the vgmerge command. You
can merge an inactive "source" volume with an active or an inactive "destination" volume if the
physical extent sizes of the volume are equal and the physical and logical volume summaries of
both volume groups fit into the destination volume groups limits.

The following command merges the inactive volume group my_vg into the active or inactive
volume group databases giving verbose runtime information.

vgmerge -v databases my_vg

3.11. Backing Up Volume Group Metadata

3.8. Removing Volume Groups

26

Metadata backups and archives are automatically created on every volume group and logical
volume configuration change unless disabled in the lvm.conf file. By default, the metadata
backup is stored in the /etc/lvm/backup file and the metadata archives are stored in the /

etc/lvm/archives file. You can manually back up the metadata to the /etc/lvm/backup file with
the vgcfgbackup command.

The vgcfrestore command restores the metadata of a volume group from the archive to all the
physical volumes in the volume groups.

For an example of using the vgcfgrestore command to recover physical volume metadata, see
Section 4, “Recovering Physical Volume Metadata”.

3.12. Renaming a Volume Group

Use the vgrename command to rename an existing volume group.

Either of the following commands renames the existing volume group vg02 to my_volume_group

vgrename /dev/vg02 /dev/my_volume_group

vgrename vg02 my_volume_group

3.13. Moving a Volume Group to Another System

You can move an entire LVM volume group to another system. It is recommended that you use
the vgexport and vgimport commands when you do this.

The vgexport command makes an inactive volume group inaccessible to the system, which al-
lows you to detach its physical volumes. The vgimport command makes a volume group ac-
cessible to a machine again after the vgexport command has made it inactive.

To move a volume group form one system to another, perform the following steps:

1. Make sure that no users are accessing files on the active volumes in the volume group,
then unmount the logical volumes.

2. Use the -a n argument of the vgchange command to mark the volume group as inactive,
which prevents any further activity on the volume group.

3. Use the vgexport command to export the volume group. This prevents it from being ac-
cessed by the system from which you are removing it.

After you export the volume group, the physical volume will show up as being in an expor-
ted volume group when you execute the pvscan command, as in the following example.

[root@tng3-1]# pvscan
PV /dev/sda1 is in exported VG myvg [17.15 GB / 7.15 GB free]
PV /dev/sdc1 is in exported VG myvg [17.15 GB / 15.15 GB free]
PV /dev/sdd1 is in exported VG myvg [17.15 GB / 15.15 GB free]
...

3.12. Renaming a Volume Group

27

When the system is next shut down, you can unplug the disks that constitute the volume
group and connect them to the new system.

4. When the disks are plugged into the new system, use the vgimport command to import the
volume group, making it accessible to the new system.

5. Activate the volume group with the -a y argument of the vgchange command.

6. Mount the file system to make it available for use.

3.14. Recreating a Volume Group Directory

To recreate a volume group directory and logical volume special files, use the vgmknodes com-
mand. This command checks the LVM2 special files in the /dev directory that are needed for
active logical volumes. It creates any special files that are missing removes unused ones.

You can incorporate the vgmknodes command into the vgscan command by specifying the -

-mknodes argument to the command.

4. Logical Volume Administration
This section describes the commands that perform the various aspects of logical volume admin-
istration.

4.1. Creating Logical Volumes

To create a logical volume, use the lvcreate command. You can create linear volumes, striped
volumes, and mirrored volumes, as described in the following subsections.

If you do not specify a name for the logical volume, the default name lvol# is used where # is
the internal number of the logical volume.

The following sections provide examples of logical volume creation for the three types of logical
volumes you can create with LVM.

4.1.1. Creating Linear Volumes

When you create a logical volume, the logical volume is carved from a volume group using the
free extents on the physical volumes that make up the volume group. Normally logical volumes
use up any space available on the underlying physical volumes on a next-free basis. Modifying
the logical volume frees and reallocates space in the physical volumes.

The following command creates a logical volume 10 gigabytes in size in the volume group vg1.

lvcreate -L 10G vg1

The following command creates a 1500 megabyte linear logical volume named testlv in the
volume group testvg, creating the block device /dev/testvg/testlv.

lvcreate -L1500 -ntestlv testvg

3.14. Recreating a Volume Group Directory

28

The following command creates a 50 gigabyte logical volume named gfslv from the free extents
in volume group vg0.

lvcreate -L 50G -n gfslv vg0

You can use the -l argument of the lvcreate command to specify the size of the logical volume
in extents. You can also use this argument to specify the percentage of the volume group to use
for the logical volume. The following command creates a logical volume called mylv that uses
60% of the total space in volume group testvol.

lvcreate -l 60%VG -n mylv testvg

You can also use the -l argument of the lvcreate command to specify the percentage of the re-
maining free space in a volume group as the size of the logical volume. The following command
creates a logical volume called yourlv that uses all of the unallocated space in the volume
group testvol.

lvcreate -l 100%FREE -n yourlv testvg

You can use -l argument of the lvcreate command to create a logical volume that uses the en-
tire volume group. Another way to create a logical volume that uses the entire volume group is
to use the vgdisplay command to find the "Total PE" size and to use those results as input to
the the lvcreate command.

The following commands create a logical volume called mylv that fills the volume group named
testvg.

vgdisplay testvg | grep "Total PE"
Total PE 10230
lvcreate -l 10230 testvg -n mylv

The underlying physical volumes used to create a logical volume can be important if the physic-
al volume needs to be removed, so you may need to consider this possibility when you create
the logical volume. For information on removing a physical volume from a volume group, see
Section 3.5, “Removing Physical Volumes from a Volume Group”.

To create a logical volume to be allocated from a specific physical volume in the volume group,
specify the physical volume or volumes at the end at the lvcreate command line. The following
command creates a logical volume named testlv in volume group testvg allocated from the
physical volume /dev/sdg1,

lvcreate -L 1500 -ntestlv testvg /dev/sdg1

You can specify which extents of a physical volume are to be used for a logical volume. The fol-
lowing example creates a linear logical volume out of extents 0 through 25 of physical volume /

dev/sda1 and extents 50 through 125 of physical volume /dev/sdb1 in volume group testvg.

4.1. Creating Logical Volumes

29

lvcreate -l 100 -n testlv testvg /dev/sda1:0-25 /dev/sdb1:50-125

The following example creates a linear logical volume out of extents 0 through 25 of physical
volume /dev/sda1 and then continues laying out the logical volume at extent 100.

lvcreate -l 100 -n testlv testvg /dev/sda1:0-25:100-

The default policy for how the extents of a logical volume are allocated is inherit, which applies
the same policy as for the volume group. These policies can be changed using the lvchange

command. For information on allocation policies, see Section 3.1, “Creating Volume Groups”.

4.1.2. Creating Striped Volumes

For large sequential reads and writes, creating a striped logical volume can improve the effi-
ciency of the data I/O. For general information about striped volumes, see Section 3.2, “Striped
Logical Volumes”.

When you create a striped logical volume, you specify the number of stripes with the -i argu-
ment of the lvcreate command. This determines over how many physical volumes the logical
volume will be striped. The number of stripes cannot be greater than the number of physical
volumes in the volume group (unless the --alloc anywhere argument is used).

The stripe size should be tuned to a power of 2 between 4kB and 512kB, and matched to the
application's I/O that is using the striped volume. The -I argument of the lvcreate command
specifies the stripe size in kilobytes.

If the underlying physical devices that make up a striped logical volume are different sizes, the
maximum size of the striped volume is determined by the smallest underlying device. For ex-
ample, in a two-legged stripe, the maximum size is twice the size of the smaller device. In a
three-legged stripe, the maximum size is three times the size of the smallest device.

The following command creates a striped logical volume across 2 physical volumes with a stride
of 64kB. The logical volume is 50 gigabytes in size, is named gfslv, and is carved out of volume
group vg0.

lvcreate -L 50G -i2 -I64 -n gfslv vg0

As with linear volumes, you can specify the extents of the physical volume that you are using for
the stripe. The following command creates a striped volume 100 extents in size that stripes
across two physical volumes, is named stripelv and is in volume group testvg. The stripe will
use sectors 0-50 of /dev/sda1 and sectors 50-100 of /dev/sdb1.

lvcreate -l 100 -i2 -nstripelv testvg /dev/sda1:0-50 /dev/sdb1:50-100
Using default stripesize 64.00 KB
Logical volume "stripelv" created

4.1.3. Creating Mirrored Volumes

When you create a mirrored volume, you specify the number of copies of the data to make with
the -m argument of the lvcreate command. Specifying -m1 creates one mirror, which yields two

4.1. Creating Logical Volumes

30

copies of the file system: a linear logical volume plus one copy. Similarly, specifying -m2 creates
two mirrors, yielding three copies of the file system.

The following command creates a mirrored logical volume with a single mirror. The volume is 50
gigabytes in size, is named mirrorlv, and is carved out of volume group vg0:

lvcreate -L 50G -m1 -n gfslv vg0

An LVM mirror divides the device being copied into regions that, by default, are 512KB in size.
You can use the -R argument to specify the region size in MB. LVM maintains a small log which
it uses to keep track of which regions are in sync with the mirror or mirrors. By default, this log is
kept on disk, which keeps it persistent across reboots. You can specify instead that this log be
kept in memory with the --corelog argument; this eliminates the need for an extra log device,
but it requires that the entire mirror be resynchronized at every reboot.

The following command creates a mirrored logical volume from the volume group bigvg. The lo-
gical is named ondiskmirvol and has a single mirror. The volume is 12MB in size and keeps the
mirror log in memory.

lvcreate -L 12MB -m1 --corelog -n ondiskmirvol bigvg
Logical volume "ondiskmirvol" created

When a mirror is created, the mirror regions are synchronized. For large mirror components, the
sync process may take a long time. When you are creating a new mirror that does not need to
be revived, you can specify the nosync argument to indicate that an initial synchronization from
the first device is not required.

You can specify which devices to use for the mirror logs and log, and which extents of the
devices to use. To force the log onto a particular disk, specify exactly one extent on the disk on
which it will be placed. LVM does not necessary respect the order in which devices are listed in
the command line. If any physical volumes are listed that is the only space on which allocation
will take place. Any physical extents included in the list that are already allocated will get ig-
nored.

The following command creates a mirrored logical volume with a single mirror. The volume is
500 megabytes in size, it is named mirrorlv, and it is carved out of volume group vg0. The first
leg of the mirror is on device /dev/sda1, the second leg of the mirror is on device /dev/sdb1, and
the mirror log is on /dev/sdc1.

lvcreate -L 500M -m1 -n mirrorlv vg0 /dev/sda1 /dev/sdb1 /dev/sdc1

The following command creates a mirrored logical volume with a single mirror. The volume is
500 megabytes in size, it is named mirrorlv, and it is carved out of volume group vg0. The first
leg of the mirror is on extents 0 through 499 of device /dev/sda1, the second leg of the mirror is
on extents 0 through 499 of device /dev/sdb1, and the mirror log starts on extent 0 of device /

dev/sdc1. These are 1MB extents. If any of the specified extents have already been allocated,
they will be ignored.

lvcreate -L 500M -m1 -n mirrorlv vg0 /dev/sda1:0-499 /dev/sdb1:0-499 /dev/sdc1:0

4.1. Creating Logical Volumes

31

4.1.4. Changing Mirrored Volume Configuration

You can convert a logical volume from a mirrored volume to a linear volume or from a linear
volume to a mirrored volume with the lvconvert command. You can also use this command to
reconfigure other mirror parameters of an existing logical volume, such as corelog.

When you convert a logical volume to a mirrored volume, you are basically creating mirror legs
for an existing volume. This means that your volume group must contain the devices and space
for the mirror legs and for the mirror log.

If you lose a leg of a mirror, LVM converts the volume to a linear volume so that you still have
access to the volume, without the mirror redundancy. After you replace the leg, you can use the
lvconvert command to restore the mirror. This procedure is provided in Section 3, “Recovering
from LVM Mirror Failure”.

The following command converts the linear logical volume vg00/lvol1 to a mirrored logical
volume.

lvconvert -m1 vg00/lvol1

The following command converts the mirrored logical volume vg00/lvol1 to a linear logical
volume, removing the mirror leg.

lvconvert -m0 vg00/lvol1

4.2. Persistent Device Numbers

Major and minor device numbers are allocated dynamically at module load. Some applications
work best if the block device always is activated with the same device (major and minor) num-
ber. You can specify these with the lvcreate and the lvchange commands by using the following
arguments:

--persistent y --major major --minor minor

Use a large minor number to be sure that it hasn't already been allocated to another device dy-
namically.

If you are exporting a file system using NFS, specifying the fsid parameter in the exports file
may avoid the need to set a persistent device number within LVM.

4.3. Resizing Logical Volumes

To change the size of a logical volume, use the lvreduce command. If the logical volume con-
tains a file system, be sure to reduce the file system first (or use the LVM GUI) so that the logic-
al volume is always at least as large as the file system expects it to be.

The following command reduces the size of logical volume lvol1 in volume group vg00 by 3 lo-
gical extents.

4.2. Persistent Device Numbers

32

lvreduce -l -3 vg00/lvol1

4.4. Changing the Parameters of a Logical Volume Group

To change the parameters of a logical volume, use the lvchange command. For a listing of the
parameters you can change, see the lvchange(8) man page.

You can use the lvchange command to activate and deactivate logical volumes. To activate and
deactivate all the logical volumes in a volume group at the same time, use the vgchange com-
mand, as described in Section 3.6, “Changing the Parameters of a Volume Group”.

The following command changes the permission on volume lvol1 in volume group vg00 to be
read-only.

lvchange -pr vg00/lvol1

4.5. Renaming Logical Volumes

To rename an existing logical volume, use the lvrename command.

Either of the following commands renames logical volume lvold in volume group vg02 to lvnew.

lvrename /dev/vg02/lvold /dev/vg02/lvnew

lvrename vg02 lvold lvnew

For more information on activating logical volumes on individual nodes in a cluster, see Sec-
tion 8, “Activating Logical Volumes on Individual Nodes in a Cluster”.

4.6. Removing Logical Volumes

To remove an inactive logical volume, use the lvremove command. You must close a logical
volume with the umount command before it can be removed. In addition, in a clustered environ-
ment you must deactivate a logical volume before it can be removed.

If the logical volume is currently mounted, unmount the volume before removing it.

The following command removes the logical volume /dev/testvg/testlv. from the volume group
testvg. Note that in this case the logical volume has not been deactivated.

[root@tng3-1 lvm]# lvremove /dev/testvg/testlv
Do you really want to remove active logical volume "testlv"? [y/n]: y
Logical volume "testlv" successfully removed

You could explicitly deactivate the logical volume before removing it with the lvchange -an com-
mand, in which case you would not see the prompt verifying whether you want to remove an
active logical volume.

4.7. Displaying Logical Volumes

4.4. Changing the Parameters of a Logical Volume Group

33

There are three commands you can use to display properties of LVM logical volumes: lvs,
lvdisplay, and lvscan.

The lvs command provides logical volume information in a configurable form, displaying one
line per logical volume. The lvs command provides a great deal of format control, and is useful
for scripting. For information on using the lvs command to customize your output, see Sec-
tion 9, “Customized Reporting for LVM”.

The lvdisplay command displays logical volume properties (such as size, layout, and mapping)
in a fixed format.

The following command shows the attributes of lvol2 in vg00. If snapshot logical volumes have
been created for this original logical volume, this command shows a list of all snapshot logical
volumes and their status (active or inactive) as well.

lvdisplay -v /dev/vg00/lvol2

The lvscan command scans for all logical volumes in the system and lists them, as in the follow-
ing example.

lvscan
ACTIVE '/dev/vg0/gfslv' [1.46 GB] inherit

4.8. Growing Logical Volumes

To increase the size of a logical volume, use the lvextend command.

After extending the logical volume, you will need to increase the size of the associated file sys-
tem to match.

When you extend the logical volume, you can indicate how much you want to extend the
volume, or how large you want it to be after you extend it.

The following command extends the logical volumne /dev/myvg/homevol to 12 gigabytes.

lvextend -L12G /dev/myvg/homevol
lvextend -- extending logical volume "/dev/myvg/homevol" to 12 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

The following command adds another gigabyte to the logical volume /dev/myvg/homevol.

lvextend -L+1G /dev/myvg/homevol
lvextend -- extending logical volume "/dev/myvg/homevol" to 13 GB
lvextend -- doing automatic backup of volume group "myvg"
lvextend -- logical volume "/dev/myvg/homevol" successfully extended

As with the lvcreate command, you can use the -l argument of the lvextend command to spe-
cify the number of extents by which to increase the size of the logical volume. You can also use
this argument to specify a percentage of the volume group, or a percentage of the remaining
free space in the volume group. The following command extends the logical volume called

4.8. Growing Logical Volumes

34

testlv to fill all of the unallocated space in the volume group myvg.

[root@tng3-1 ~]# lvextend -l +100%FREE /dev/myvg/testlv
Extending logical volume testlv to 68.59 GB
Logical volume testlv successfully resized

After you have extended the logical volume it is necessary to increase the file system size to
match.

By default, most file system resizing tools will increase the size of the file system to be the size
of the underlying logical volume so you do not need to worry about specifying the same size for
each of the two commands.

4.9. Extending a Striped Volume

In order to increase the size of a striped logical volume, there must be enough free space on the
underlying physical volumes that make up the volume group to support the stripe. For example,
if you have a two-way stripe that that uses up an entire volume group, adding a single physical
volume to the volume group will not enable you to extend the stripe. Instead, you must add at
least two physical volumes to the volume group.

For example, consider a volume group vg that consists of two underlying physical volumes, as
displayed with the following vgs command.

vgs
VG #PV #LV #SN Attr VSize VFree
vg 2 0 0 wz--n- 271.31G 271.31G

You can create a stripe using the entire amount of space in the volume group.

lvcreate -n stripe1 -L 271.31G -i 2 vg
Using default stripesize 64.00 KB
Rounding up size to full physical extent 271.31 GB
Logical volume "stripe1" created

lvs -a -o +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe1 vg -wi-a- 271.31G /dev/sda1(0),/dev/sdb1(0)

Note that the volume group now has no more free space.

vgs
VG #PV #LV #SN Attr VSize VFree
vg 2 1 0 wz--n- 271.31G 0

The following command adds another physical volume to the volume group, which then has
135G of additional space.

vgextend vg /dev/sdc1
Volume group "vg" successfully extended

vgs
VG #PV #LV #SN Attr VSize VFree
vg 3 1 0 wz--n- 406.97G 135.66G

4.9. Extending a Striped Volume

35

At this point you cannot extend the striped logical volume to the full size of the volume group,
because two underlying devices are needed in order to stripe the data.

lvextend vg/stripe1 -L 406G
Using stripesize of last segment 64.00 KB
Extending logical volume stripe1 to 406.00 GB
Insufficient suitable allocatable extents for logical volume stripe1: 34480

more required

To extend the striped logical volume, add another physical volume and then extend the logical
volume. In this example, having added two physical volumes to the volume group we can ex-
tend the logical volume 5A to the full size of the volume group.

vgextend vg /dev/sdd1
Volume group "vg" successfully extended

vgs
VG #PV #LV #SN Attr VSize VFree
vg 4 1 0 wz--n- 542.62G 271.31G

lvextend vg/stripe1 -L 542G
Using stripesize of last segment 64.00 KB
Extending logical volume stripe1 to 542.00 GB
Logical volume stripe1 successfully resized

If you do not have enough underlying physical devices to extend the striped logical volume, it is
possible to extend the volume anyway if it does not matter that the extension is not striped,
which may result in uneven performance. When adding space to the logical volume, the default
operation is to use the same striping paramgers of the last segment of the existing logical
volume, but you can override those parameters. The following example extends the existing
striped logical volume to use the remaining free space after the initial lvextend command fails.

lvextend vg/stripe1 -L 406G
Using stripesize of last segment 64.00 KB
Extending logical volume stripe1 to 406.00 GB
Insufficient suitable allocatable extents for logical volume stripe1: 34480

more required
lvextend -iL -l+100%FREE vg/stripe1

4.10. Shrinking Logical Volumes

To reduce the size of a logical volume, first unmount the file system. You can then use the lvre-

duce command to shrink the volume. After shrinking the volume, remount the file system.

Caution

It is important to reduce the size of the file system or whatever is residing in the
volume before shrinking the volume itself, otherwise you risk losing data.

Shrinking a logical volume frees some of the volume group to be allocated to other logical
volumes in the volume group.

The following example reduces the size of logical volume lvol1 in volume group vg00 by 3 logic-

4.10. Shrinking Logical Volumes

36

al extents.

lvreduce -l -3 vg00/lvol1

5. Creating Snapshot Volumes
Use the -s argument of the lvcreate command to create a snapshot volume. A snapshot
volume is writeable.

LVM snapshots are not cluster-aware, so they require exclusive access to a volume. For inform-
ation on activating logical volumes on individual nodes in a cluster, see Section 8, “Activating
Logical Volumes on Individual Nodes in a Cluster”.

The following command creates a snapshot logical volume that is 100 megabytes in size named
/dev/vg00/snap. This creates a snapshot of the origin logical volume named /dev/vg00/lvol1. If
the original logical volume contains a file system, you can mount the snapshot logical volume on
an arbitrary directory in order to access the contents of the file system to run a backup while the
original file system continues to get updated.

lvcreate --size 100M --snapshot --name snap /dev/vg00/lvol1

After you create a snapshot logical volume, specifying the origin volume on the lvdisplay com-
mand yields output that includes a a list of all snapshot logical volumes and their status (active
or inactive).

The following example shows the status of the logical volume /dev/new_vg/lvol0, for which a
snapshot volume /dev/new_vg/newvgsnap has been created.

lvdisplay /dev/new_vg/lvol0
--- Logical volume ---
LV Name /dev/new_vg/lvol0
VG Name new_vg
LV UUID LBy1Tz-sr23-OjsI-LT03-nHLC-y8XW-EhCl78
LV Write Access read/write
LV snapshot status source of

/dev/new_vg/newvgsnap1 [active]
LV Status available
open 0
LV Size 52.00 MB
Current LE 13
Segments 1
Allocation inherit
Read ahead sectors 0
Block device 253:2

The lvs command, by default, displays the origin volume and the current percentage of the
snapshot volume being used for each snapshot volume. The following example shows the de-
fault output for the lvs command for a system that includes the logical volume /

dev/new_vg/lvol0, for which a snapshot volume /dev/new_vg/newvgsnap has been created.

lvs
LV VG Attr LSize Origin Snap% Move Log Copy%
lvol0 new_vg owi-a- 52.00M
newvgsnap1 new_vg swi-a- 8.00M lvol0 0.20

5. Creating Snapshot Volumes

37

Note

Because the snapshot increases in size as the origin volume changes, it is import-
ant to monitor the percentage of the snapshot volume regularly with the lvs com-
mand to be sure it does not fill. A snapshot that is 100% full is lost completely, as
write to unchanged parts of the originin would be unable to succeed without cor-
rupting the snapshot.

6. Controlling LVM Device Scans with Filters
At startup, the vgscan command is run to scan the block devices on the system looking for LVM
labels, to determine which of them are physical volumes and to read the metadata and build up
a list of volume groups. The names of the physical volumes are stored in the cache file of each
node in the system, /etc/lvm/.cache. Subsequent commands may read that file to avoiding res-
canning.

You can control which devices LVM scans by setting up filters in the lvm.conf configuration file.
The filters consist of a series of simple regular expressions that get applied to the device names
in the /dev directory to decide whether to accept or reject each block device found.

The following examples show the use of filters to control which devices LVM scans. Note that
some of these examples do not necessarily represent best practice, as the regular expressions
are matched freely against the complete pathname. For example, a/loop/ is equivalent to a/

.*loop.*/ and would match /dev/solooperation/lvol1.

The following filter adds all discovered devices, which is the default behavior as there is no filter
configured in the configuration file:

filter = ["a/.*/"]

The following filter removes the cdrom device in order to avoid delays if the drive contains no
media:

filter = ["r|/dev/cdrom|"]

The following filter adds all loop and removes all other block devices:

filter = ["a/loop.*/", "r/.*/"]

The following filter adds all loop and IDE and removes all other block devices:

filter =["a|loop.*|", "a|/dev/hd.*|", "r|.*|"]

The following filter adds just partition 8 on the first IDE drive and removes all other block
devices:

6. Controlling LVM Device Scans with Filters

38

filter = ["a|^/dev/hda8$|", "r/.*/"]

For more information on the lvm.conf file, see Appendix B, The LVM Configuration Files and the
lvm.conf(5) man page.

7. Online Data Relocation
You can move data while the system is in use with the pvmove command.

The pvmove command breaks up the data to be moved into sections and creates a temporary
mirror to move each section. For more information on the operation of the pvmove command, see
the pvmove(8) man page.

Because the pvmove command uses mirroring, it is not cluster-aware and needs exclusive ac-
cess to a volume. For information on activating logical volumes on individual nodes in a cluster,
see Section 8, “Activating Logical Volumes on Individual Nodes in a Cluster”.

The following command moves all allocated space off the physical volume /dev/sdc1 to other
free physical volumes in the volume group:

pvmove /dev/sdc1

The following command moves just the extents of the logical volume MyLV.

pvmove -n MyLV /dev/sdc1

Since the pvmove command can take a long time to execute, you may want to run the command
in the background to avoid display of progress updates in the foreground. The following com-
mand moves all extents allocated to to the physical volume /dev/sdc1 over to /dev/sdf1 in the
background.

pvmove -b /dev/sdc1 /dev/sdf1

The following command reports the progress of the move as a percentage at five second inter-
vals.

pvmove -i5 /dev/sdd1

8. Activating Logical Volumes on Individual
Nodes in a Cluster
If you have LVM installed in a cluster environment, you may at times need to activate logical
volumes exclusively on one node. For example, the pvmove command is not cluster-aware and
needs exclusive access to a volume. LVM snapshots require exclusive access to a volume as
well.

7. Online Data Relocation

39

To activate logical volumes exclusively on one node, use the lvchange -aey command. Alternat-
ively, you can use lvchange -aly command to activate logical volumes only on the local node
but not exclusively. You can later activate them on additional nodes concurrently.

You can also activate logical volumes on individual nodes by using LVM tags, which are de-
scribed in Appendix C, LVM Object Tags. You can also specify activation of nodes in the config-
uration file, which is described in Appendix B, The LVM Configuration Files.

9. Customized Reporting for LVM
You can produce concise and customizable reports of LVM objects with the pvs, lvs, and vgs

commands. The reports that these commands generate include one line of output for each ob-
ject. Each line contains an ordered list of fields of properties related to the object. There are five
ways to select the objects to be reported: by physical volume, volume group, logical volume,
physical volume segment, and logical volume segment.

The following sections provide:

• A summary of command arguments you can use to control the format of the generated re-
port.

• A list of the fields you can select for each LVM object.

• A summary of command arguments you can use to sort the generated report.

• Instructions for specifying the units of the report output.

9.1. Format Control

Whether you use the pvs, lvs, or vgs command determines the default set of fields displayed
and the sort order. You can control the output of these commands with the following arguments:

• You can change what fields are displayed to something other than the default by using the -

o argument. For example, the following output is the default display for the pvs command
(which displays information about physcial volumes).

pvs
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The following command displays only the physical volume name and size.

pvs -o pv_name,pv_size
PV PSize
/dev/sdb1 17.14G
/dev/sdc1 17.14G
/dev/sdd1 17.14G

• You can append a field to the output with the plus sign (+), which is used in combination with

9. Customized Reporting for LVM

40

the -o argument.

The following example displays the UUID of the physical volume in addition to the default
fields.

pvs -o +pv_uuid
PV VG Fmt Attr PSize PFree PV UUID
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6XqA-dqGeXY
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G Joqlch-yWSj-kuEn-IdwM-01S9-XO8M-mcpsVe
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-0dGW-tUqkCS

• Adding the -v argument to a command includes some extra fields. For example, the pvs -v

command will display the DevSize and PV UUID fields in addition to the default fields.

pvs -v
Scanning for physical volume names

PV VG Fmt Attr PSize PFree DevSize PV UUID
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6XqA-dqGeXY
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-IdwM-01S9-XO8M-mcpsVe
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-0dGW-tUqkCS

• The --noheadings argument suppresses the headings line. This can be useful for writing
scripts.

The following example uses the --noheadings argument in combination with the pv_name ar-
gument, which will generate a list of all physical volumes.

pvs --noheadings -o pv_name
/dev/sdb1
/dev/sdc1
/dev/sdd1

• The --separator separator argument uses separator to separate each field. This can be
useful in a script if you are running a grep command on the output.

The following example separates the default output fields of the pvs command with an
equals sign (=).

pvs --separator =
PV=VG=Fmt=Attr=PSize=PFree
/dev/sdb1=new_vg=lvm2=a-=17.14G=17.14G
/dev/sdc1=new_vg=lvm2=a-=17.14G=17.09G
/dev/sdd1=new_vg=lvm2=a-=17.14G=17.14G

To keep the fields aligned when using the separator argument, use the separator argument
in conjunction with the --aligned argument.

pvs --separator = --aligned
PV =VG =Fmt =Attr=PSize =PFree
/dev/sdb1 =new_vg=lvm2=a- =17.14G=17.14G
/dev/sdc1 =new_vg=lvm2=a- =17.14G=17.09G
/dev/sdd1 =new_vg=lvm2=a- =17.14G=17.14G

You can use the -P argument of the lvs or vgs command to display information about a failed

9.1. Format Control

41

volume that would otherwise not appear in the output. For information on the output this argu-
ment yields, see Section 2, “Displaying Information on Failed Devices”.

For a full listing of display arguments, see the pvs(8), vgs(8) and lvs(8) man pages.

Volume group fields can be mixed with either physical volume (and physical volume segment)
fields or with logical volume (and logical volume segment) fields, but physical volume and logical
volume fields cannot be mixed. For example, the following command will display one line of out-
put for each physical volume.

vgs -o +pv_name
VG #PV #LV #SN Attr VSize VFree PV
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdc1
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdd1
new_vg 3 1 0 wz--n- 51.42G 51.37G /dev/sdb1

9.2. Object Selection

This section provides a series of tables that list the information you can display about the LVM
objects with the pvs, vgs, and lvs commands.

For convenience, a field name prefix can be dropped if it matches the default for the command.
For example, with the pvs command, name means pv_name, but with the vgs command, name is in-
terpreted as vg_name.

Executing the following command is the equivalent of executing pvs -o pv_free.

pvs -o free
PFree
17.14G
17.09G
17.14G

The pvs Command

Table 4.1, “pvs Display Fields” lists the display arguments of the pvs command, along with the
field name as it appears in the header display and a description of the field.

Argument Header Description

dev_size DevSize The size of the underlying device on which the physical
volume was created

pe_start 1st PE Offset to the start of the first physical extent in the underlying
device

pv_attr Attr Status of the physical volume: (a)llocatable or e(x)ported.

pv_fmt Fmt The metadata format of the physical volume (lvm2 or lvm1)

pv_free PFree The free space remaining on the physical volume

pv_name PV The physical volume name

pv_pe_alloc_c

ount

Alloc Number of used physical extents

9.2. Object Selection

42

Argument Header Description

pv_pe_count PE Number of physical extents

pvseg_size SSize The segment size of the physical volume

pvseg_start Start The starting physical extent of the physical volume segment

pv_size PSize The size of the physical volume

pv_tags PV Tags LVM tags attached to the physical volume

pv_used Used The amount of space currently used on the physical volume

pv_uuid PV UUID The UUID of the physical volume

Table 4.1. pvs Display Fields

The pvs command displays the following fields by default: pv_name, vg_name, pv_fmt, pv_attr,
pv_size, pv_free. The display is sorted by pv_name.

pvs
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
/dev/sdd1 new_vg lvm2 a- 17.14G 17.13G

Using the -v argument with the pvs command adds the following fields to the default display:
dev_size, pv_uuid.

pvs -v
Scanning for physical volume names

PV VG Fmt Attr PSize PFree DevSize PV UUID
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G 17.14G onFF2w-1fLC-ughJ-D9eB-M7iv-6XqA-dqGeXY
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G 17.14G Joqlch-yWSj-kuEn-IdwM-01S9-XO8M-mcpsVe
/dev/sdd1 new_vg lvm2 a- 17.14G 17.13G 17.14G yvfvZK-Cf31-j75k-dECm-0RZ3-0dGW-tUqkCS

You can use the --segments argument of the pvs command to display information about each
physical volume segment. A segment is a group of extents. A segment view can be useful if you
want to see whether your logical volume is fragmented.

The pvs --segments command displays the following fields by default: pv_name, vg_name, pv_fmt,
pv_attr, pv_size, pv_free, pvseg_start, pvseg_size. The display is sorted by pv_name and
pvseg_size within the physical volume.

pvs --segments
PV VG Fmt Attr PSize PFree Start SSize
/dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 0 1172
/dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1172 16
/dev/hda2 VolGroup00 lvm2 a- 37.16G 32.00M 1188 1
/dev/sda1 vg lvm2 a- 17.14G 16.75G 0 26
/dev/sda1 vg lvm2 a- 17.14G 16.75G 26 24
/dev/sda1 vg lvm2 a- 17.14G 16.75G 50 26
/dev/sda1 vg lvm2 a- 17.14G 16.75G 76 24
/dev/sda1 vg lvm2 a- 17.14G 16.75G 100 26

9.2. Object Selection

43

/dev/sda1 vg lvm2 a- 17.14G 16.75G 126 24
/dev/sda1 vg lvm2 a- 17.14G 16.75G 150 22
/dev/sda1 vg lvm2 a- 17.14G 16.75G 172 4217
/dev/sdb1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdc1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdd1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sde1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdf1 vg lvm2 a- 17.14G 17.14G 0 4389
/dev/sdg1 vg lvm2 a- 17.14G 17.14G 0 4389

You can use the pvs -a command to see devices detected by LVM that have not been initialized
as LVM physical volumes.

pvs -a
PV VG Fmt Attr PSize PFree
/dev/VolGroup00/LogVol01 -- 0 0
/dev/new_vg/lvol0 -- 0 0
/dev/ram -- 0 0
/dev/ram0 -- 0 0
/dev/ram2 -- 0 0
/dev/ram3 -- 0 0
/dev/ram4 -- 0 0
/dev/ram5 -- 0 0
/dev/ram6 -- 0 0
/dev/root -- 0 0
/dev/sda -- 0 0
/dev/sdb -- 0 0
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
/dev/sdc -- 0 0
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
/dev/sdd -- 0 0
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The vgs Command

Table 4.2, “vgs Display Fields” lists the display arguments of the vgs command, along with the
field name as it appears in the header display and a description of the field.

Argument Header Description

lv_count #LV The number of logical volumes the volume group contains

max_lv MaxLV The maximum number of logical volumes allowed in the
volume group (0 if unlimited)

max_pv MaxPV The maximum number of physical volumes allowed in the
volume group (0 if unlimited)

pv_count #PV The number of physical volumes that define the volume group

snap_count #SN The number of snapshots the volume group contains

vg_attr Attr Status of the volume group: (w)riteable, (r)eadonly,
resi(z)eable, e(x)ported, (p)artial and (c)lustered.

vg_extent_cou

nt

#Ext The number of physical extents in the volume group

vg_extent_siz

e

Ext The size of the physical extents in the volume group

9.2. Object Selection

44

Argument Header Description

vg_fmt Fmt The metadata format of the volume group (lvm2 or lvm1)

vg_free VFree Size of the free space remaining in the volume group

vg_free_count Free Number of free physical extents in the volume group

vg_name VG The volume group name

vg_seqno Seq Number representing the revision of the volume group

vg_size VSize The size of the volume group

vg_sysid SYS ID LVM1 System ID

vg_tags VG Tags LVM tags attached to the volume group

vg_uuid VG UUID The UUID of the volume group

Table 4.2. vgs Display Fields

The vgs command displays the following fields by default: vg_name, pv_count, lv_count,
snap_count, vg_attr, vg_size, vg_free. The display is sorted by vg_name.

vgs
VG #PV #LV #SN Attr VSize VFree
new_vg 3 1 1 wz--n- 51.42G 51.36G

Using the -v argument with the vgs command adds the following fields to the default display:
vg_extent_size, vg_uuid.

vgs -v
Finding all volume groups
Finding volume group "new_vg"

VG Attr Ext #PV #LV #SN VSize VFree VG UUID
new_vg wz--n- 4.00M 3 1 1 51.42G 51.36G jxQJ0a-ZKk0-OpMO-0118-nlwO-wwqd-fD5D32

The lvs Command

Table 4.3, “lvs Display Fields” lists the display arguments of the lvs command, along with the
field name as it appears in the header display and a description of the field.

Argument Header Description

chunksize

chunk_size

Chunk Unit size in a snapshot volume

copy_percent Copy% The synchronization percentage of a mirrored logical volume;
also used when physical extents are being moved with the
pv_move command

devices Devices The underlying devices that make up the logical volume: the

9.2. Object Selection

45

Argument Header Description

physical volumes, logical volumes, and start physical extents
and logical extents

lv_attr Attr The status of the logical volume. The logical volume attribute
bits are as follows:

Bit 1: Volume type: (m)irrored, (M)irrored without initial sync,
(o)rigin, (p)vmove, (s)napshot, invalid (S)napshot, (v)irtual
Bit2: Permissions: (w)riteable, (r)ead-only
Bit 3: Allocation policy: (c)ontiguous, (n)ormal, (a)nywhere,
(i)nherited. This is capitalized if the volume is currently locked
against allocation changes, for example while executing the
pvmove command.
Bit 4: fixed (m)inor
Bit 5 State: (a)ctive, (s)uspended, (I)nvalid snapshot, invalid
(S)uspended snapshot, mapped (d)evice present without
tables, mapped device present with (i)nactive table
Bit 6: device (o)pen

lv_kernel_maj

or

KMaj Actual major device number of the logical volume (-1 if inact-
ive)

lv_kernel_min

or

KMIN Actual minor device number of the logical volume (-1 if inact-
ive)

lv_major Maj The persistent major device number of the logical volume (-1
if not specified)

lv_minor Min The persistent minor device number of the logical volume (-1
if not specified)

lv_name LV The name of the logical volume

lv_size LSize The size of the logical volume

lv_tags LV Tags LVM tags attached to the logical volume

lv_uuid LV UUID The UUID of the logical volume.

mirror_log Log Device on which the mirror log resides

modules Modules Corresponding kernel device-mapper target necessary to use
this logical volume

move_pv Move Source physical volume of a temporary logical volume created
with the pvmove command

origin Origin The origin device of a snapshot volume

regionsize

region_size

Region The unit size of a mirrored logical volume

seg_count #Seg The number of segments in the logical volume

9.2. Object Selection

46

Argument Header Description

seg_size SSize The size of the segments in the logical volume

seg_start Start Offset of the segment in the logical volume

seg_tags Seg Tags LVM tags attached to the segments of the logical volume

segtype Type The segment type of a logical volume (for example: mirror,
striped, linear)

snap_percent Snap% Current percentage of a snapshot volume that is in use

stripes #Str Number of stripes or mirrors in a logical volume

stripesize

stripe_size

Stripe Unit size of the stripe in a striped logical volume

Table 4.3. lvs Display Fields

The lvs command displays the following fields by default: lv_name, vg_name, lv_attr, lv_size,
origin, snap_percent, move_pv, mirror_log, copy_percent. The default display is sorted by
vg_name and lv_name within the volume group.

lvs
LV VG Attr LSize Origin Snap% Move Log Copy%
lvol0 new_vg owi-a- 52.00M
newvgsnap1 new_vg swi-a- 8.00M lvol0 0.20

Using the -v argauament with the lvs command adds the following fields to the default display:
seg_count, lv_major, lv_minor, lv_kernel_major, lv_kernel_minor, lv_uuid.

lvs -v
Finding all logical volumes

LV VG #Seg Attr LSize Maj Min KMaj KMin Origin Snap% Move Copy% Log LV UUID
lvol0 new_vg 1 owi-a- 52.00M -1 -1 253 3 LBy1Tz-sr23-OjsI-LT03-nHLC-y8XW-EhCl78
newvgsnap1 new_vg 1 swi-a- 8.00M -1 -1 253 5 lvol0 0.20 1ye1OU-1cIu-o79k-20h2-ZGF0-qCJm-CfbsIx

You can use the --segments argument of the lvs command to display information with default
columns that emphasize the segment information. When you use the segments argument, the
seg prefix is optional. The lvs --segments command displays the following fields by default:
lv_name, vg_name, lv_attr, stripes, segtype, seg_size. The default display is sorted by vg_name,
lv_name within the volume group, and seg_start within the logical volume. If the logical volumes
were fragmented, the output from this command would show that.

lvs --segments
LV VG Attr #Str Type SSize
LogVol00 VolGroup00 -wi-ao 1 linear 36.62G
LogVol01 VolGroup00 -wi-ao 1 linear 512.00M
lv vg -wi-a- 1 linear 104.00M
lv vg -wi-a- 1 linear 104.00M
lv vg -wi-a- 1 linear 104.00M
lv vg -wi-a- 1 linear 88.00M

9.2. Object Selection

47

Using the -v argument with the lvs --segments command adds the following fields to the default
display: seg_start, stripesize, chunksize.

lvs -v --segments
Finding all logical volumes

LV VG Attr Start SSize #Str Type Stripe Chunk
lvol0 new_vg owi-a- 0 52.00M 1 linear 0 0
newvgsnap1 new_vg swi-a- 0 8.00M 1 linear 0 8.00K

The following example shows the default output of the lvs command on a system with one lo-
gical volume configured, followed by the default output of the lvs command with the segments

argument specified.

lvs
LV VG Attr LSize Origin Snap% Move Log Copy%
lvol0 new_vg -wi-a- 52.00M

lvs --segments
LV VG Attr #Str Type SSize
lvol0 new_vg -wi-a- 1 linear 52.00M

9.3. Sorting LVM Reports

Normally the entire output of the lvs, vgs, or pvs command has to be generated and stored in-
ternally before it can be sorted and columns aligned correctly. You can specify the --unbuffered

argument to display unsorted output as soon as it is generated.

To specify an alternative ordered list of columns to sort on, use the -O argument of any of the re-
porting commands. It is not necessary to include these fields within the output itself.

The following example shows the output of the pvs command that displays the physical volume
name, size, and free space.

pvs -o pv_name,pv_size,pv_free
PV PSize PFree
/dev/sdb1 17.14G 17.14G
/dev/sdc1 17.14G 17.09G
/dev/sdd1 17.14G 17.14G

The following example shows the same output, sorted by the free space field.

pvs -o pv_name,pv_size,pv_free -O pv_free
PV PSize PFree
/dev/sdc1 17.14G 17.09G
/dev/sdd1 17.14G 17.14G
/dev/sdb1 17.14G 17.14G

The following example shows that you do not need to display the field on which you are sorting.

pvs -o pv_name,pv_size -O pv_free
PV PSize
/dev/sdc1 17.14G
/dev/sdd1 17.14G
/dev/sdb1 17.14G

9.3. Sorting LVM Reports

48

To display a reverse sort, precede a field you specify after the -O argument with the - character.

pvs -o pv_name,pv_size,pv_free -O -pv_free
PV PSize PFree
/dev/sdd1 17.14G 17.14G
/dev/sdb1 17.14G 17.14G
/dev/sdc1 17.14G 17.09G

9.4. Specifying Units

To specify the unit for the LVM report display, use the --units argument of the report command.
You can specify (b)ytes, (k)ilobytes, (m)egabytes, (g)igabytes, (t)erabytes, (e)xabytes,
(p)etabytes, and (h)uman-readable. The default display is human-readable. You can override
the default by setting the units parameter in the global section of the lvm.conf file.

The following example specifies the output of the pvs command in megabytes rather than the
default gigabytes.

pvs --units m
PV VG Fmt Attr PSize PFree
/dev/sda1 lvm2 -- 17555.40M 17555.40M
/dev/sdb1 new_vg lvm2 a- 17552.00M 17552.00M
/dev/sdc1 new_vg lvm2 a- 17552.00M 17500.00M
/dev/sdd1 new_vg lvm2 a- 17552.00M 17552.00M

By default, units are displayed in powers of 2 (multiples of 1024). You can specify that units be
displayed in multiples of 1000 by capitalizing the unit specification (B, K, M, G, T, H).

The following command displays the output as a multiple of 1024, the default behavior.

pvs
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 17.14G 17.14G
/dev/sdc1 new_vg lvm2 a- 17.14G 17.09G
/dev/sdd1 new_vg lvm2 a- 17.14G 17.14G

The following command displays the output as a multiple of 1000.

pvs --units G
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 18.40G 18.40G
/dev/sdc1 new_vg lvm2 a- 18.40G 18.35G
/dev/sdd1 new_vg lvm2 a- 18.40G 18.40G

You can also specify (s)ectors (defined as 512 bytes) or custom units.

The following example displays the output of the pvs command as a number of sectors.

pvs --units s
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 35946496S 35946496S
/dev/sdc1 new_vg lvm2 a- 35946496S 35840000S
/dev/sdd1 new_vg lvm2 a- 35946496S 35946496S

9.4. Specifying Units

49

The following example displays the output of the pvs command in units of 4 megabytes.

pvs --units 4m
PV VG Fmt Attr PSize PFree
/dev/sdb1 new_vg lvm2 a- 4388.00U 4388.00U
/dev/sdc1 new_vg lvm2 a- 4388.00U 4375.00U
/dev/sdd1 new_vg lvm2 a- 4388.00U 4388.00U

9.4. Specifying Units

50

Chapter 5. LVM Configuration
Examples

This chapter provides some basic LVM configuration examples.

1. Creating an LVM Logical Volume on Three
Disks
This example creates an LVM logical volume called new_logical_volume that consists of the
disks at /dev/sda1, /dev/sdb1, and /dev/sdc1.

1.1. Creating the Physical Volumes

To use disks in a volume group, you label them as LVM physical volumes.

Caution

This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

[root@tng3-1 ~]# pvcreate /dev/sda1 /dev/sdb1 /dev/sdc1
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdc1" successfully created

1.2. Creating the Volume Group

The following command creates the volume group new_vol_group.

[root@tng3-1 ~]# vgcreate new_vol_group /dev/sda1 /dev/sdb1 /dev/sdc1
Volume group "new_vol_group" successfully created

You can use the vgs command to display the attributes of the new volume group.

[root@tng3-1 ~]# vgs
VG #PV #LV #SN Attr VSize VFree
new_vol_group 3 0 0 wz--n- 51.45G 51.45G

1.3. Creating the Logical Volume

The following command creates the logical volume new_logical_volume from the volume group
new_vol_group. This example creates a logical volume that uses 2GB of the volume group.

[root@tng3-1 ~]# lvcreate -L2G -n new_logical_volume new_vol_group

51

Logical volume "new_logical_volume" created

1.4. Creating the File System

The following command creates a GFS file system on the logical volume.

[root@tng3-1 ~]# gfs_mkfs -plock_nolock -j 1 /dev/new_vol_group/new_logical_volume
This will destroy any data on /dev/new_vol_group/new_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/new_vol_group/new_logical_volume
Blocksize: 4096
Filesystem Size: 491460
Journals: 1
Resource Groups: 8
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space usage.

[root@tng3-1 ~]# mount /dev/new_vol_group/new_logical_volume /mnt
[root@tng3-1 ~]# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/new_vol_group/new_logical_volume

1965840 20 1965820 1% /mnt

2. Creating a Striped Logical Volume
This example creates an LVM striped logical volume called striped_logical_volume that stripes
data across the disks at /dev/sda1, /dev/sdb1, and /dev/sdc1.

2.1. Creating the Physical Volumes

Label the disks you will use in the volume groups as LVM physical volumes.

Caution

This command destroys any data on /dev/sda1, /dev/sdb1, and /dev/sdc1.

[root@tng3-1 ~]# pvcreate /dev/sda1 /dev/sdb1 /dev/sdc1
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdc1" successfully created

2.2. Creating the Volume Group

The following command creates the volume group striped_vol_group.

1.4. Creating the File System

52

[root@tng3-1 ~]# vgcreate striped_vol_group /dev/sda1 /dev/sdb1 /dev/sdc1
Volume group "striped_vol_group" successfully created

You can use the vgs command to display the attributes of the new volume group.

[root@tng3-1 ~]# vgs
VG #PV #LV #SN Attr VSize VFree
striped_vol_group 3 0 0 wz--n- 51.45G 51.45G

2.3. Creating the Logical Volume

The following command creates the striped logical volume striped_logical_volume from the
volume group striped_vol_group. This example creates a logical volume that is 2 gigabytes in
size, with three stripes and a stripe size of 4 kilobytes.

[root@tng3-1 ~]# lvcreate -i3 -I4 -L2G -nstriped_logical_volume striped_vol_group
Rounding size (512 extents) up to stripe boundary size (513 extents)
Logical volume "striped_logical_volume" created

2.4. Creating the File System

The following command creates a GFS file system on the logical volume.

[root@tng3-1 ~]# gfs_mkfs -plock_nolock -j 1 /dev/striped_vol_group/striped_logical_volume
This will destroy any data on /dev/striped_vol_group/striped_logical_volume.

Are you sure you want to proceed? [y/n] y

Device: /dev/striped_vol_group/striped_logical_volume
Blocksize: 4096
Filesystem Size: 492484
Journals: 1
Resource Groups: 8
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

The following commands mount the logical volume and report the file system disk space usage.

[root@tng3-1 ~]# mount /dev/striped_vol_group/striped_logical_volume /mnt
[root@tng3-1 ~]# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/mapper/VolGroup00-LogVol00

13902624 1656776 11528232 13% /
/dev/hda1 101086 10787 85080 12% /boot
tmpfs 127880 0 127880 0% /dev/shm
/dev/striped_vol_group/striped_logical_volume

1969936 20 1969916 1% /mnt

3. Splitting a Volume Group
In this example, an existing volume group consists of three physical volumes. If there is enough

2.3. Creating the Logical Volume

53

unused space on the physical volumes, a new volume group can be created without adding new
disks.

In the initial set up, the logical volume mylv is carved from the volume group myvol, which in turn
consists of the three physical volumes, /dev/sda1, /dev/sdb1, and /dev/sdc1.

After completing this procedure, the volume group myvg will consist of /dev/sda1 and /dev/sdb1.
A second volume group, yourvg, will consist of /dev/sdc1.

3.1. Determining Free Space

You can use the pvscan command to determine how much free space is currently available in
the volume group.

[root@tng3-1 ~]# pvscan
PV /dev/sda1 VG myvg lvm2 [17.15 GB / 0 free]
PV /dev/sdb1 VG myvg lvm2 [17.15 GB / 12.15 GB free]
PV /dev/sdc1 VG myvg lvm2 [17.15 GB / 15.80 GB free]
Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0]

3.2. Moving the Data

You can move all the used physical extents in /dev/sdc1 to /dev/sdb1 with the pvmove command.
The pvmove command can take a long time to execute.

[root@tng3-1 ~]# pvmove /dev/sdc1 /dev/sdb1
/dev/sdc1: Moved: 14.7%
/dev/sdc1: Moved: 30.3%
/dev/sdc1: Moved: 45.7%
/dev/sdc1: Moved: 61.0%
/dev/sdc1: Moved: 76.6%
/dev/sdc1: Moved: 92.2%
/dev/sdc1: Moved: 100.0%

After moving the data, you can see that all of the space on /dev/sdc1 is free.

[root@tng3-1 ~]# pvscan
PV /dev/sda1 VG myvg lvm2 [17.15 GB / 0 free]
PV /dev/sdb1 VG myvg lvm2 [17.15 GB / 10.80 GB free]
PV /dev/sdc1 VG myvg lvm2 [17.15 GB / 17.15 GB free]
Total: 3 [51.45 GB] / in use: 3 [51.45 GB] / in no VG: 0 [0]

3.3. Splitting the Volume Group

To create the new volume group yourvg, use the vgsplit command to split the volume group
myvg.

Before you can split the volume group, the logical volume must be inactive. If the file system is
mounted, you must unmount the file system before deactivating the logical volume.

You can deactivate the logical volumes with the lvchange command or the vgchange command.
The following command deactivates the logical volume mylv and then splits the volume group
yourvg from the volume group myvg, moving the physical volume /dev/sdc1 into the new volume

3.1. Determining Free Space

54

group yourvg.

[root@tng3-1 ~]# lvchange -a n /dev/myvg/mylv
[root@tng3-1 ~]# vgsplit myvg yourvg /dev/sdc1
Volume group "yourvg" successfully split from "myvg"

You can use the vgs command to see the attributes of the two volume groups.

[root@tng3-1 ~]# vgs
VG #PV #LV #SN Attr VSize VFree
myvg 2 1 0 wz--n- 34.30G 10.80G
yourvg 1 0 0 wz--n- 17.15G 17.15G

3.4. Creating the New Logical Volume

After creating the new volume group, you can create the new logical volume yourlv.

[root@tng3-1 ~]# lvcreate -L5G -n yourlv yourvg
Logical volume "yourlv" created

3.5. Making a File System and Mounting the New Logical
Volume

You can make a file system on the new logical volume and mount it.

[root@tng3-1 ~]# gfs_mkfs -plock_nolock -j 1 /dev/yourvg/yourlv
This will destroy any data on /dev/yourvg/yourlv.

Are you sure you want to proceed? [y/n] y

Device: /dev/yourvg/yourlv
Blocksize: 4096
Filesystem Size: 1277816
Journals: 1
Resource Groups: 20
Locking Protocol: lock_nolock
Lock Table:

Syncing...
All Done

[root@tng3-1 ~]# mount /dev/yourvg/yourlv /mnt

3.6. Activating and Mounting the Original Logical Volume

Since you had to deactivate the logical volume mylv, you need to activate it again before you
can mount it.

root@tng3-1 ~]# lvchange -a y mylv

[root@tng3-1 ~]# mount /dev/myvg/mylv /mnt
[root@tng3-1 ~]# df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/yourvg/yourlv 24507776 32 24507744 1% /mnt
/dev/myvg/mylv 24507776 32 24507744 1% /mnt

3.4. Creating the New Logical Volume

55

4. Removing a Disk from a Logical Volume
This example shows how you can remove a disk from an existing logical volume, either to re-
place the disk or to use the disk as part of a different volume. In order to remove a disk, you
must first move the extents on the LVM physical volume to a different disk or set of disks.

4.1. Moving Extents to Existing Physical Volumes

In this example, the logical volume is distributed across four physical volumes in the volume
group myvg.

[root@tng3-1]# pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sda1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdb1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

We want to move the extents off of /dev/sdb1 so that we can remove it from the volume group.

If there are enough free extents on the other physical volumes in the volume group, you can ex-
ecute the pvmove command on the device you want to remove with no other options and the ex-
tents will be distributed to the other devices.

[root@tng3-1 ~]# pvmove /dev/sdb1
/dev/sdb1: Moved: 2.0%

...
/dev/sdb1: Moved: 79.2%

...
/dev/sdb1: Moved: 100.0%

After the pvmove command has finished executing, the distribution of extents is as follows:

[root@tng3-1]# pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0
/dev/sdc1 myvg lvm2 a- 17.15G 12.15G 5.00G
/dev/sdd1 myvg lvm2 a- 17.15G 2.15G 15.00G

Use the vgreduce command to remove the physical volume /dev/sdb1 from the volume group.

[root@tng3-1 ~]# vgreduce myvg /dev/sdb1
Removed "/dev/sdb1" from volume group "myvg"

[root@tng3-1 ~]# pvs
PV VG Fmt Attr PSize PFree
/dev/sda1 myvg lvm2 a- 17.15G 7.15G
/dev/sdb1 lvm2 -- 17.15G 17.15G
/dev/sdc1 myvg lvm2 a- 17.15G 12.15G
/dev/sdd1 myvg lvm2 a- 17.15G 2.15G

The disk can now be physically removed or allocated to other users.

4. Removing a Disk from a Logical Volume

56

4.2. Moving Extents to a New Disk

In this example, the logical volume is distributed across three physical volumes in the volume
group myvg as follows:

[root@tng3-1]# pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G

We want to move the extents of /dev/sdb1 to a new device, /dev/sdd1.

4.2.1. Creating the New Physical Volume

Create a new physical volume from /dev/sdd1.

[root@tng3-1 ~]# pvcreate /dev/sdd1
Physical volume "/dev/sdd1" successfully created

4.2.2. Adding the New Physical Volume to the Volume Group

Add /dev/sdd1 to the existing volume group myvg.

[root@tng3-1 ~]# vgextend myvg /dev/sdd1
Volume group "myvg" successfully extended

[root@tng3-1]# pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdd1 myvg lvm2 a- 17.15G 17.15G 0

4.2.3. Moving the Data

Use the pvmove command to move the data from /dev/sdb1 to /dev/sdd1.

[root@tng3-1 ~]# pvmove /dev/sdb1 /dev/sdd1
/dev/sdb1: Moved: 10.0%

...
/dev/sdb1: Moved: 79.7%

...
/dev/sdb1: Moved: 100.0%

[root@tng3-1]# pvs -o+pv_used
PV VG Fmt Attr PSize PFree Used
/dev/sda1 myvg lvm2 a- 17.15G 7.15G 10.00G
/dev/sdb1 myvg lvm2 a- 17.15G 17.15G 0
/dev/sdc1 myvg lvm2 a- 17.15G 15.15G 2.00G
/dev/sdd1 myvg lvm2 a- 17.15G 15.15G 2.00G

4.2.4. Removing the Old Physical Volume from the Volume Group

After you have moved the data off /dev/sdb1, you can remove it from the volume group.

4.2. Moving Extents to a New Disk

57

[root@tng3-1 ~]# vgreduce myvg /dev/sdb1
Removed "/dev/sdb1" from volume group "myvg"

You can now reallocate the disk to another volume group or remove the disk from the system.

4.2. Moving Extents to a New Disk

58

Chapter 6. LVM Troubleshooting
This chapter provide instructions for troubleshooting a variety of LVM issues.

1. Troubleshooting Diagnostics
If a command is not working as expected, you can gather diagnostics in the following ways:

• Use the -v, -vv, -vvv, or -vvvv argument of any command for increasingly verbose levels of
output.

• If the problem is related to the logical volume activation, set 'activation = 1' in the 'log' section
of the configuration file and run the command with the -vvvv argument. After you have fin-
ished examining this output be sure to reset this parameter to 0, to avoid possible problems
with the machine locking during low memory situations.

• Run the lvmdump command, which provides and information dump for diagnostic purposes.
For information, see the lvmdump(8) man page.

• Execute the lvs -v, pvs -a or dmsetup info -c command for additional system information.

• Examine the last backup of the metadata in the /etc/lvm/backup file and archived versions in
the /etc/lvm/archive file.

• Check the current configuration information by running the lvm dumpconfig command.

• Check the .cache file in the /etc/lvm directory for a record of which devices have physical
volumes on them.

2. Displaying Information on Failed Devices
You can use the -P argument of the lvs or vgs command to display information about a failed
volume that would otherwise not appear in the output. This argument permits some operations
even though the metatdata is not completely consistent internally. For example, if one of the
devices that made up the volume group vg failed, the vgs command might show the following
output.

[root@link-07 tmp]# vgs -o +devices
Volume group "vg" not found

If you specify the -P argument of the vgs command, the volume group is still unusable but you
can see more information about the failed device.

[root@link-07 tmp]# vgs -P -o +devices
Partial mode. Incomplete volume groups will be activated read-only.
VG #PV #LV #SN Attr VSize VFree Devices
vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(0)
vg 9 2 0 rz-pn- 2.11T 2.07T unknown device(5120),/dev/sda1(0)

59

In this example, the failed device caused both a linear and a striped logical volume in the
volume group to fail. The lvs command without the -P argument shows the following output.

[root@link-07 tmp]# lvs -a -o +devices
Volume group "vg" not found

Using the -P argument shows the logical volumes that have failed.

[root@link-07 tmp]# lvs -P -a -o +devices
Partial mode. Incomplete volume groups will be activated read-only.
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
linear vg -wi-a- 20.00G unknown device(0)
stripe vg -wi-a- 20.00G unknown device(5120),/dev/sda1(0)

The following examples show the output of the pvs and lvs commands with the -P argument
specified when a leg of a mirrored logical volume has failed.

root@link-08 ~]# vgs -a -o +devices -P
Partial mode. Incomplete volume groups will be activated read-only.
VG #PV #LV #SN Attr VSize VFree Devices
corey 4 4 0 rz-pnc 1.58T 1.34T my_mirror_mimage_0(0),my_mirror_mimage_1(0)
corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdd1(0)
corey 4 4 0 rz-pnc 1.58T 1.34T unknown device(0)
corey 4 4 0 rz-pnc 1.58T 1.34T /dev/sdb1(0)

[root@link-08 ~]# lvs -a -o +devices -P
Partial mode. Incomplete volume groups will be activated read-only.
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
my_mirror corey mwi-a- 120.00G my_mirror_mlog 1.95 my_mirror_mimage_0(0),my_mirror_mimage_1(0)
[my_mirror_mimage_0] corey iwi-ao 120.00G unknown device(0)
[my_mirror_mimage_1] corey iwi-ao 120.00G /dev/sdb1(0)
[my_mirror_mlog] corey lwi-ao 4.00M /dev/sdd1(0)

3. Recovering from LVM Mirror Failure
This section provides an example of recovering from a situation where one leg of an LVM
mirrored volume fails because the underlying device for a physical volume goes down. When a
mirror leg fails, LVM converts the mirrored volume into a linear volume, which continues to oper-
ate as before but without the mirrored redundancy. At that point, you can add a new disk device
to the system to use as a replacement physical device and rebuild the mirror.

The following command creates the physical volumes which will be used for the mirror.

[root@link-08 ~]# pvcreate /dev/sd[abcdefgh][12]
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sda2" successfully created
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdb2" successfully created
Physical volume "/dev/sdc1" successfully created
Physical volume "/dev/sdc2" successfully created
Physical volume "/dev/sdd1" successfully created
Physical volume "/dev/sdd2" successfully created
Physical volume "/dev/sde1" successfully created
Physical volume "/dev/sde2" successfully created
Physical volume "/dev/sdf1" successfully created

3. Recovering from LVM Mirror Failure

60

Physical volume "/dev/sdf2" successfully created
Physical volume "/dev/sdg1" successfully created
Physical volume "/dev/sdg2" successfully created
Physical volume "/dev/sdh1" successfully created
Physical volume "/dev/sdh2" successfully created

The following commands creates the volume group vg and the mirrored volume groupfs.

[root@link-08 ~]# vgcreate vg /dev/sd[abcdefgh][12]
Volume group "vg" successfully created

[root@link-08 ~]# lvcreate -L 750M -n groupfs -m 1 vg /dev/sda1 /dev/sdb1 /dev/sdc1
Rounding up size to full physical extent 752.00 MB
Logical volume "groupfs" created

You can use the lvs command to verify the layout of the mirrored volume and the underlying
devices for the mirror leg and the mirror log. Note that in the first example the mirror is not yet
completely synced; you should wait until the Copy% field displays 100.00 before continuing.

[root@link-08 ~]# lvs -a -o +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
groupfs vg mwi-a- 752.00M groupfs_mlog 21.28 groupfs_mimage_0(0),groupfs_mimage_1(0)
[groupfs_mimage_0] vg iwi-ao 752.00M /dev/sda1(0)
[groupfs_mimage_1] vg iwi-ao 752.00M /dev/sdb1(0)
[groupfs_mlog] vg lwi-ao 4.00M /dev/sdc1(0)

[root@link-08 ~]# lvs -a -o +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
groupfs vg mwi-a- 752.00M groupfs_mlog 100.00 groupfs_mimage_0(0),groupfs_mimage_1(0)
[groupfs_mimage_0] vg iwi-ao 752.00M /dev/sda1(0)
[groupfs_mimage_1] vg iwi-ao 752.00M /dev/sdb1(0)
[groupfs_mlog] vg lwi-ao 4.00M i /dev/sdc1(0)

In this example, the primary leg of the mirror /dev/sda1 fails. Any write activity to the mirrored
volume causes LVM to detect the failed mirror. When this occurs, LVM converts the mirror into a
single linear volume. In this case, to trigger the conversion, we execute a dd command

[root@link-08 ~]# dd if=/dev/zero of=/dev/vg/groupfs count=10
10+0 records in
10+0 records out

You can use the lvs command to verify that the device is now a linear device. Because of the
failed disk, I/O errors occur.

[root@link-08 ~]# lvs -a -o +devices
/dev/sda1: read failed after 0 of 2048 at 0: Input/output error
/dev/sda2: read failed after 0 of 2048 at 0: Input/output error
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
groupfs vg -wi-a- 752.00M /dev/sdb1(0)

At this point you should still be able to use the logical volume, but there will be no mirror redund-
ancy.

To rebuild the mirrored volume, you replace the broken drive and recreate the physical volume.
If you use the same disk rather than replacing it with a new one, you will see "inconsistent"
warnings when you run the pvcreate command.

3. Recovering from LVM Mirror Failure

61

[root@link-08 ~]# pvcreate /dev/sda[12]
Physical volume "/dev/sda1" successfully created
Physical volume "/dev/sda2" successfully created

[root@link-08 ~]# pvscan
PV /dev/sdb1 VG vg lvm2 [67.83 GB / 67.10 GB free]
PV /dev/sdb2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdc1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdc2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdd1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdd2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sde1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sde2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdf1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdf2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdg1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdg2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdh1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdh2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sda1 lvm2 [603.94 GB]
PV /dev/sda2 lvm2 [603.94 GB]
Total: 16 [2.11 TB] / in use: 14 [949.65 GB] / in no VG: 2 [1.18 TB]

Next you extend the original volume group with the new physical volume.

[root@link-08 ~]# vgextend vg /dev/sda[12]
Volume group "vg" successfully extended

[root@link-08 ~]# pvscan
PV /dev/sdb1 VG vg lvm2 [67.83 GB / 67.10 GB free]
PV /dev/sdb2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdc1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdc2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdd1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdd2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sde1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sde2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdf1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdf2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdg1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdg2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdh1 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sdh2 VG vg lvm2 [67.83 GB / 67.83 GB free]
PV /dev/sda1 VG vg lvm2 [603.93 GB / 603.93 GB free]
PV /dev/sda2 VG vg lvm2 [603.93 GB / 603.93 GB free]
Total: 16 [2.11 TB] / in use: 16 [2.11 TB] / in no VG: 0 [0]

Convert the linear volume back to its original mirrored state.

[root@link-08 ~]# lvconvert -m 1 /dev/vg/groupfs /dev/sda1 /dev/sdb1 /dev/sdc1
Logical volume mirror converted.

You can use the lvs command to verify that the mirror is restored.

[root@link-08 ~]# lvs -a -o +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
groupfs vg mwi-a- 752.00M groupfs_mlog 68.62 groupfs_mimage_0(0),groupfs_mimage_1(0)
[groupfs_mimage_0] vg iwi-ao 752.00M /dev/sdb1(0)
[groupfs_mimage_1] vg iwi-ao 752.00M /dev/sda1(0)
[groupfs_mlog] vg lwi-ao 4.00M /dev/sdc1(0)

4. Recovering Physical Volume Metadata

62

4. Recovering Physical Volume Metadata
If the volume group metadata area of a physical volume is accidentally overwritten or otherwise
destroyed, you will get an error message indicating that the metadata area is incorrect, or that
the system was unable to find a physical volume with a particular UUID. You may be able to re-
cover the data the physical volume by writing a new metadata area on the physical volume spe-
cifying the same UUID as the lost metadata.

Caution

You should not attempt this procedure with a working LVM logical volume. You will
lose your data if you specify the incorrect UUID.

The following example shows the sort of output you may see if the metadata area is missing or
corrupted.

[root@link-07 backup]# lvs -a -o +devices
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
Couldn't find all physical volumes for volume group VG.
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
Couldn't find all physical volumes for volume group VG.
...

You may be able to find the UUID for the physical volume that was overwritten by looking in the
/etc/lvm/archive directory. Look in the file VolumeGroupName_xxxx.vg for the last known valid
archived LVM metadata for that volume group.

Alternately, you may find that deactivating the volume and setting the partial (-P) argument will
enable you to find the UUID of the missing corrupted physical volume.

[root@link-07 backup]# vgchange -an --partial
Partial mode. Incomplete volume groups will be activated read-only.
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
Couldn't find device with uuid 'FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk'.
...

Use the --uuid and --restorefile arguments of the pvcreate command to restore the physical
volume. The following example labels the /dev/sdh1 device as a physical volume with the UUID
indicated above, FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk. This command restores the physical
volume label with the metadata information contained in VG_00050.vg, the most recent good
archived metatdata for volume group . The restorefile argument instructs the pvcreate com-
mand to make the new physical volume compatible with the old one on the volume group, en-
suring that the the new metadata will not be placed where the old physical volume contained
data (which could happen, for example, if the original pvcreate command had used the com-
mand line arguments that control metadata placement, or it the physical volume was originally
created using a different version of the software that used different defaults). The pvcreate com-
mand overwrites only the LVM metadata areas and does not affect the existing data areas.

[root@link-07 backup]# pvcreate --uuid "FmGRh3-zhok-iVI8-7qTD-S5BI-MAEN-NYM5Sk" --restorefile /etc/lvm/archive/VG_00050.vg /dev/sdh1

4. Recovering Physical Volume Metadata

63

Physical volume "/dev/sdh1" successfully created

You can then use the vgcfgrestore command to restore the volume group's metadata.

[root@link-07 backup]# vgcfgrestore VG
Restored volume group VG

You can now display the logical volumes.

[root@link-07 backup]# lvs -a -o +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi--- 300.00G /dev/sdh1 (0),/dev/sda1(0)
stripe VG -wi--- 300.00G /dev/sdh1 (34728),/dev/sdb1(0)

The following commands activate the volumes and display the active volumes.

[root@link-07 backup]# lvchange -ay /dev/VG/stripe
[root@link-07 backup]# lvs -a -o +devices
LV VG Attr LSize Origin Snap% Move Log Copy% Devices
stripe VG -wi-a- 300.00G /dev/sdh1 (0),/dev/sda1(0)
stripe VG -wi-a- 300.00G /dev/sdh1 (34728),/dev/sdb1(0)

If the on-disk LVM metadata takes as least as much space as what overrode it, this command
can recover the physical volume. If what overrode the metadata went past the metadata area,
the data on the volume may have been affected. You might be able to use the fsck command to
recover that data.

5. Replacing a Missing Physical Volume
If a physical volume fails or otherwise needs to be replaced, you can label a new physical
volume to replace the one that has been lost in the existing volume group by following the same
procedure as you would for recovering physical volume metadata, described in Section 4,
“Recovering Physical Volume Metadata”. You can use the --partial and --verbose arguments
of the vgdisplay command to display the UUIDs and sizes of any physical volumes that are no
longer present. If you wish to substitute another physical volume of the same size, you can use
the pvcreate command with the --restorefile and --uuid arguments to initialize a new device
with the same UUID as the missing physical volume. You can then use the vgcfgrestore com-
mand to restore the volume group's metadata.

6. Removing Lost Physical Volumes from a
Volume Group
If you lose a physical volume, you can activate the remaining physical volumes in the volume
group with the --partial argument of the vgchange command. You can remove all the logical
volumes that used that physical volume from the volume group with the --removemissing argu-
ment of the vgreduce command.

It is recommended that you run the vgreduce command with the --test argument to verify what
you will be destroying.

5. Replacing a Missing Physical Volume

64

Like most LVM operations, the vgreduce command is reversible in a sense if you immediately
use the vgcfgrestore command to restore the volume group metadata to its previous state. For
example, if you used the --removemissing argument of the vgreduce command without the -

-test argument and find you have removed logical volumes you wanted to keep, you can still
replace the physical volume and use another vgcfgrestore command to return the volume
group to its previous state.

7. Insufficient Free Extents for a Logical
Volume
You may get the error message "Insufficient free extents" when creating a logical volume when
you think you have enough extents based on the output of the vgdisplay or vgs commands. This
is because these commands round figures to 2 decimal places to provide human-readable out-
put. To specify exact size, use free physical extent count instead of some multiple of bytes to
determine the size of the logical volume.

The vgdisplay command, by default, includes this line of output that indicates the free physical
extents.

vgdisplay
--- Volume group ---
...
Free PE / Size 8780 / 34.30 GB

Alternately, you can use the vg_free_count and vg_extent_count arguments of the vgs command
to display the free extents and the total number of extents.

[root@tng3-1 ~]# vgs -o +vg_free_count,vg_extent_count
VG #PV #LV #SN Attr VSize VFree Free #Ext
testvg 2 0 0 wz--n- 34.30G 34.30G 8780 8780

With 8780 free physical extents, you can run the following command, using the lower-case l ar-
gument to use extents instead of bytes:

lvcreate -l8780 -n testlv testvg

This uses all the free extents in the volume group.

vgs -o +vg_free_count,vg_extent_count
VG #PV #LV #SN Attr VSize VFree Free #Ext
testvg 2 1 0 wz--n- 34.30G 0 0 8780

Alternately, you can extend the logical volume to use a percentage of the remaining free space
in the volume group by using the -l argument of the lvcreate command. For information, see
Section 4.1.1, “Creating Linear Volumes”.

7. Insufficient Free Extents for a Logical Volume

65

Chapter 7. LVM Administration with
the LVM GUI

In addition to the Command Line Interface (CLI), LVM provides a Graphical User Interface (GUI)
which you can use to configure LVM logical volumes. You can bring up this utility by typing sys-

tem-config-lvm. The LVM chapter of the Red Hat Enterprise Linux Deployment Guide provides
step-by-step instructions for configuring an LVM logical volume using this utility.

In addition, the LVM GUI is availalbe as part of the Conga management interface. For informa-
tion on using the LVM GUI with Conga, see the online help for Conga.

66

Appendix A. The Device Mapper
The Device Mapper is a kernel driver that provides a generic framework for volume manage-
ment. It provides a generic way of creating mapped devices, which may be used as logical
volumes. It does not specifically know about volume groups or metadata formats.

The Device Mapper provides the foundation for a number of higher-level technologies. In addi-
tion to LVM, device-mapper multipath and the dmraid command use the Device Mapper.

The user interface to the Device Mapper is the ioctl system call.

LVM logical volumes are activated using the Device Mapper. Each logical volume is translated
into a mapped device, Each segment translates into a line in the mapping table that describes
the device. The Device Mapper provides linear mapping, striped mapping, and error mapping,
amongst others. Two disks can be concatenated into one logical volume with a pair of linear
mappings, one for each disk.

The dmsetup command is a command line wrapper for communication with the Device Mapper.
It provides complete access to the ioctl commands through the libdevmapper command. For
general system information about LVM devices, you may find the dmsetup info command to be
useful.

For information about the options and capabilities of the dmsetup command, see the dmsetup(8)
man page.

67

Appendix B. The LVM
Configuration Files
LVM supports multiple configuration files. At system startup, the lvm.conf configuration file is
loaded from the directory specified by the environment variable LVM_SYSTEM_DIR, which is set to /

etc/lvm by default.

The lvm.conf file can specify additional configuration files to load. Settings in later files override
settings from earlier ones. To display the settings in use after loading all the configuration files,
execute the lvm dumpconfig command.

For information on loading additional configuration files, see Section 2, “Host Tags”.

1. The LVM Configuration Files
The following files are used for LVM configuration:

/etc/lvm/lvm.conf
Central configuration file read by the tools.

etc/lvm/lvm_hosttag.conf
For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that file
defines new tags, then further configuration files will be appended to the list of tiles to read
in. For information on host tags, see Section 2, “Host Tags”.

In addition to the LVM configuration files, a system running LVM includes the following files that
affect LVM system setup:

/etc/lvm/.cache
Device name filter cache file (configurable).

/etc/lvm/backup/
Directory for automatic volume group metadata backups (configurable).

/etc/lvm/archive/
Directory for automatic volume group metadata archives (configurable with regard to direct-
ory path and archive history depth).

/var/lock/lvm/
In single-host configuration, lock files to prevent parallel tool runs from corrupting the
metadata; in a cluster, cluster-wide DLM is used.

2. Sample lvm.conf File
The following is a sample lvm.conf configuration file.

[root@tng3-1 lvm]# cat lvm.conf

68

This is an example configuration file for the LVM2 system.
It contains the default settings that would be used if there was no
/etc/lvm/lvm.conf file.
#
Refer to 'man lvm.conf' for further information including the file layout.
#
To put this file in a different directory and override /etc/lvm set
the environment variable LVM_SYSTEM_DIR before running the tools.

This section allows you to configure which block devices should
be used by the LVM system.
devices {

Where do you want your volume groups to appear ?
dir = "/dev"

An array of directories that contain the device nodes you wish
to use with LVM2.
scan = ["/dev"]

A filter that tells LVM2 to only use a restricted set of devices.
The filter consists of an array of regular expressions. These
expressions can be delimited by a character of your choice, and
prefixed with either an 'a' (for accept) or 'r' (for reject).
The first expression found to match a device name determines if
the device will be accepted or rejected (ignored). Devices that
don't match any patterns are accepted.

Be careful if there there are symbolic links or multiple filesystem
entries for the same device as each name is checked separately against
the list of patterns. The effect is that if any name matches any 'a'
pattern, the device is accepted; otherwise if any name matches any 'r'
pattern it is rejected; otherwise it is accepted.

Don't have more than one filter line active at once: only one gets used.

Run vgscan after you change this parameter to ensure that
the cache file gets regenerated (see below).
If it doesn't do what you expect, check the output of 'vgscan -vvvv'.

By default we accept every block device:
Steel Toe installed filter -- use this line while running tests
filter = ["r/hda/", "r/disk/", "a/.*/"]
Steel Toe installed filter -- use this line when installing new kernels
#filter = ["r/disk/", "a/.*/"]

Exclude the cdrom drive
filter = ["r|/dev/cdrom|"]

When testing I like to work with just loopback devices:
filter = ["a/loop/", "r/.*/"]

Or maybe all loops and ide drives except hdc:
filter =["a|loop|", "r|/dev/hdc|", "a|/dev/ide|", "r|.*|"]

Use anchors if you want to be really specific
filter = ["a|^/dev/hda8$|", "r/.*/"]

The results of the filtering are cached on disk to avoid
rescanning dud devices (which can take a very long time). By
default this cache file is hidden in the /etc/lvm directory.
It is safe to delete this file: the tools regenerate it.
cache = "/etc/lvm/.cache"

You can turn off writing this cache file by setting this to 0.
write_cache_state = 1

2. Sample lvm.conf File

69

Advanced settings.

List of pairs of additional acceptable block device types found
in /proc/devices with maximum (non-zero) number of partitions.
types = ["fd", 16]

If sysfs is mounted (2.6 kernels) restrict device scanning to
the block devices it believes are valid.
1 enables; 0 disables.
sysfs_scan = 1

By default, LVM2 will ignore devices used as components of
software RAID (md) devices by looking for md superblocks.
1 enables; 0 disables.
md_component_detection = 1

}

This section that allows you to configure the nature of the
information that LVM2 reports.
log {

Controls the messages sent to stdout or stderr.
There are three levels of verbosity, 3 being the most verbose.
verbose = 0

Should we send log messages through syslog?
1 is yes; 0 is no.
syslog = 1

Should we log error and debug messages to a file?
By default there is no log file.
#file = "/var/log/lvm2.log"

Should we overwrite the log file each time the program is run?
By default we append.
overwrite = 0

What level of log messages should we send to the log file and/or syslog?
There are 6 syslog-like log levels currently in use - 2 to 7 inclusive.
7 is the most verbose (LOG_DEBUG).
level = 0

Format of output messages
Whether or not (1 or 0) to indent messages according to their severity
indent = 1

Whether or not (1 or 0) to display the command name on each line output
command_names = 0

A prefix to use before the message text (but after the command name,
if selected). Default is two spaces, so you can see/grep the severity
of each message.
prefix = " "

To make the messages look similar to the original LVM tools use:
indent = 0
command_names = 1
prefix = " -- "

Set this if you want log messages during activation.
Don't use this in low memory situations (can deadlock).
activation = 0

}

Configuration of metadata backups and archiving. In LVM2 when we
talk about a 'backup' we mean making a copy of the metadata for the
current system. The 'archive' contains old metadata configurations.

2. Sample lvm.conf File

70

Backups are stored in a human readable text format.
backup {

Should we maintain a backup of the current metadata configuration ?
Use 1 for Yes; 0 for No.
Think very hard before turning this off!
backup = 1

Where shall we keep it ?
Remember to back up this directory regularly!
backup_dir = "/etc/lvm/backup"

Should we maintain an archive of old metadata configurations.
Use 1 for Yes; 0 for No.
On by default. Think very hard before turning this off.
archive = 1

Where should archived files go ?
Remember to back up this directory regularly!
archive_dir = "/etc/lvm/archive"

What is the minimum number of archive files you wish to keep ?
retain_min = 10

What is the minimum time you wish to keep an archive file for ?
retain_days = 30

}

Settings for the running LVM2 in shell (readline) mode.
shell {

Number of lines of history to store in ~/.lvm_history
history_size = 100

}

Miscellaneous global LVM2 settings
global {

library_dir = "/usr/lib"

The file creation mask for any files and directories created.
Interpreted as octal if the first digit is zero.
umask = 077

Allow other users to read the files
#umask = 022

Enabling test mode means that no changes to the on disk metadata
will be made. Equivalent to having the -t option on every
command. Defaults to off.
test = 0

Whether or not to communicate with the kernel device-mapper.
Set to 0 if you want to use the tools to manipulate LVM metadata
without activating any logical volumes.
If the device-mapper kernel driver is not present in your kernel
setting this to 0 should suppress the error messages.
activation = 1

If we can't communicate with device-mapper, should we try running
the LVM1 tools?
This option only applies to 2.4 kernels and is provided to help you
switch between device-mapper kernels and LVM1 kernels.
The LVM1 tools need to be installed with .lvm1 suffices
e.g. vgscan.lvm1 and they will stop working after you start using
the new lvm2 on-disk metadata format.
The default value is set when the tools are built.
fallback_to_lvm1 = 0

2. Sample lvm.conf File

71

The default metadata format that commands should use - "lvm1" or "lvm2".
The command line override is -M1 or -M2.
Defaults to "lvm1" if compiled in, else "lvm2".
format = "lvm1"

Location of proc filesystem
proc = "/proc"

Type of locking to use. Defaults to local file-based locking (1).
Turn locking off by setting to 0 (dangerous: risks metadata corruption
if LVM2 commands get run concurrently).
Type 2 uses the external shared library locking_library.
Type 3 uses built-in clustered locking.
locking_type = 1

If using external locking (type 2) and initialisation fails,
with this set to 1 an attempt will be made to use the built-in
clustered locking.
If you are using a customised locking_library you should set this to 0.
fallback_to_clustered_locking = 1

If an attempt to initialise type 2 or type 3 locking failed, perhaps
because cluster components such as clvmd are not running, with this set
to 1 an attempt will be made to use local file-based locking (type 1).
If this succeeds, only commands against local volume groups will proceed.
Volume Groups marked as clustered will be ignored.
fallback_to_local_locking = 1

Local non-LV directory that holds file-based locks while commands are
in progress. A directory like /tmp that may get wiped on reboot is OK.
locking_dir = "/var/lock/lvm"

Other entries can go here to allow you to load shared libraries
e.g. if support for LVM1 metadata was compiled as a shared library use
format_libraries = "liblvm2format1.so"
Full pathnames can be given.

Search this directory first for shared libraries.
library_dir = "/lib"

The external locking library to load if locking_type is set to 2.
locking_library = "liblvm2clusterlock.so"

}

activation {
Device used in place of missing stripes if activating incomplete volume.
For now, you need to set this up yourself first (e.g. with 'dmsetup')
For example, you could make it return I/O errors using the 'error'
target or make it return zeros.
missing_stripe_filler = "/dev/ioerror"

How much stack (in KB) to reserve for use while devices suspended
reserved_stack = 256

How much memory (in KB) to reserve for use while devices suspended
reserved_memory = 8192

Nice value used while devices suspended
process_priority = -18

If volume_list is defined, each LV is only activated if there is a
match against the list.
"vgname" and "vgname/lvname" are matched exactly.
"@tag" matches any tag set in the LV or VG.
"@*" matches if any tag defined on the host is also set in the LV or VG
#
volume_list = ["vg1", "vg2/lvol1", "@tag1", "@*"]

2. Sample lvm.conf File

72

Size (in KB) of each copy operation when mirroring
mirror_region_size = 512

'mirror_image_fault_policy' and 'mirror_log_fault_policy' define
how a device failure affecting a mirror is handled.
A mirror is composed of mirror images (copies) and a log.
A disk log ensures that a mirror does not need to be re-synced
(all copies made the same) every time a machine reboots or crashes.
#
In the event of a failure, the specified policy will be used to
determine what happens:
#
"remove" - Simply remove the faulty device and run without it. If
the log device fails, the mirror would convert to using
an in-memory log. This means the mirror will not
remember its sync status across crashes/reboots and
the entire mirror will be re-synced. If a
mirror image fails, the mirror will convert to a
non-mirrored device if there is only one remaining good
copy.
#
"allocate" - Remove the faulty device and try to allocate space on
a new device to be a replacement for the failed device.
Using this policy for the log is fast and maintains the
ability to remember sync state through crashes/reboots.
Using this policy for a mirror device is slow, as it
requires the mirror to resynchronize the devices, but it
will preserve the mirror characteristic of the device.
This policy acts like "remove" if no suitable device and
space can be allocated for the replacement.
Currently this is not implemented properly and behaves
similarly to:
#
"allocate_anywhere" - Operates like "allocate", but it does not
require that the new space being allocated be on a
device is not part of the mirror. For a log device
failure, this could mean that the log is allocated on
the same device as a mirror device. For a mirror
device, this could mean that the mirror device is
allocated on the same device as another mirror device.
This policy would not be wise for mirror devices
because it would break the redundant nature of the
mirror. This policy acts like "remove" if no suitable
device and space can be allocated for the replacement.

mirror_log_fault_policy = "allocate"
mirror_device_fault_policy = "remove"

}

####################
Advanced section
####################

Metadata settings
#
metadata {

Default number of copies of metadata to hold on each PV. 0, 1 or 2.
You might want to override it from the command line with 0
when running pvcreate on new PVs which are to be added to large VGs.

pvmetadatacopies = 1

Approximate default size of on-disk metadata areas in sectors.
You should increase this if you have large volume groups or
you want to retain a large on-disk history of your metadata changes.

2. Sample lvm.conf File

73

pvmetadatasize = 255

List of directories holding live copies of text format metadata.
These directories must not be on logical volumes!
It's possible to use LVM2 with a couple of directories here,
preferably on different (non-LV) filesystems, and with no other
on-disk metadata (pvmetadatacopies = 0). Or this can be in
addition to on-disk metadata areas.
The feature was originally added to simplify testing and is not
supported under low memory situations - the machine could lock up.
#
Never edit any files in these directories by hand unless you
you are absolutely sure you know what you are doing! Use
the supplied toolset to make changes (e.g. vgcfgrestore).

dirs = ["/etc/lvm/metadata", "/mnt/disk2/lvm/metadata2"]
#}

Event daemon
#
dmeventd {

mirror_library is the library used when monitoring a mirror device.
#
"libdevmapper-event-lvm2mirror.so" attempts to recover from failures.
It removes failed devices from a volume group and reconfigures a
mirror as necessary.
#
mirror_library = "libdevmapper-event-lvm2mirror.so"

#}

2. Sample lvm.conf File

74

Appendix C. LVM Object Tags
An LVM tag is a word that can be used to group LVM2 objects of the same type together. Tags
can be attached to objects such as physical volumes, volume groups, and logical volumes. Tags
can be attached to hosts in a cluster configuration. Snapshots cannot be tagged.

Tags can be given on the command line in place of PV, VG or LV arguments. Tags should be
prefixed with @ to avoid ambiguity. Each tag is expanded by replacing it with all objects pos-
sessing that tag which are of the type expected by its position on the command line.

LVM tags are strings using [A-Za-z0-9_+.-] of up to 128 characters. They cannot start with a hy-
phen.

Only objects in a volume group can be tagged. Physical volumes lose their tags if they are re-
moved from a volume group; this is because tags are stored as part of the volume group
metadata and that is deleted when a physical volume is removed. Snapshots cannot be tagged.

The following command lists all the logical volumes with the database tag.

lvs @database

1. Adding and Removing Object Tags
To add or delete tags from physical volumes, use the --addtag or --deltag option of the
pvchange command.

To add or delete tags from volume groups, use the --addtag or --deltag option of the vgchange

or vgcreate commands.

To add or delete tags from logical volumes, use the --addtag or --deltag option of the lvchange

or lvcreate commands.

2. Host Tags
In a cluster configuration, you can define host tags in the configuration files. If you set hosttags
= 1 in the tags section, a host tag is automatically defined using the machine's hostname. This
allow you to use a common configuration file which can be replicated on all your machines so
they hold identical copies of the file, but the behavior can differ between machines according to
the hostname.

For information on the configuration files, see Appendix B, The LVM Configuration Files.

For each host tag, an extra configuration file is read if it exists: lvm_hosttag.conf. If that file
defines new tags, then further configuration files will be appended to the list of files to read in.

For example, the following entry in the configuration file always defines tag1, and defines tag2 if
the hostname is host1.

tags { tag1 { } tag2 { host_list = ["host1"] } }

75

3. Controlling Activation with Tags
You can specify in the configuration file that only certain logical volumes should be activated on
that host. For example, the following entry acts as a filter for activation requests (such as
vgchange -ay) and only activates vg1/lvol0 and any logical volumes or volume groups with the
database tag in the metadata on that host.

activation { volume_list = ["vg1/lvol0", "@database"] }

There is a special match "@*" that causes a match only if any metadata tag matches any host
tag on that machine.

As another example, consider a situation where every machine in the cluster has the following
entry in the configuration file:

tags { hosttags = 1 }

If you want to activate vg1/lvol2 only on host db2, do the following:

1. Run lvchange --addtag @db2 vg1/lvol2 from any host in the cluster.

2. Run lvchange -ay vg1/lvol2.

This solution involves storing hostnames inside the volume group metadata.

3. Controlling Activation with Tags

76

Appendix D. LVM Volume Group
Metadata
The configuration details of a volume group are referred to as the metadata. By default, an
identical copy of the metadata is maintained in every metadata area in every physical volume
within the volume group. LVM volume group metadata is small and stored as ASCII.

If a volume group contains many physical volumes, having many redundant copies of the
metadata is inefficient. It is possible to create a physical volume without any metadata copies by
using the --metadatacopies 0 option of the pvcreate command. Once you have selected the
number of metadata copies the physical volume will contain, you cannot change that at a later
point. Selecting 0 copies can result in faster updates on configuration changes. Note, however,
that at all times every volume group must contain at least one physical volume with a metadata
area (unless you are using the advanced configuration settings that allow you to store volume
group metadata in a file system). If you intend to split the volume group in the future, every
volume group needs at least one metadata copy.

The core metadata is stored in ASCII. A metadata area is a circular buffer. New metadata is ap-
pended to the old metadata and then the pointer to the start of it is updated.

You can specify the size of metadata area with the --metadatasize. option of the pvcreate com-
mand. The default size is too small for volume groups with many logical volumes or physical
volumes.

1. The Physical Volume Label
By default, the pvcreate command places the physical volume label in the 2nd 512-byte sector.
This label can optionally be placed in any of the first four sectors, since the LVM tools that scan
for a physical volume label check the first 4 sectors. The physical volume label begins with the
string LABELONE.

The physical volume label Contains:

• Physical volume UUID

• Size of block device in bytes

• NULL-terminated list of data area locations

• NULL-terminated lists of metadata area locations

Metadata locations are stored as offset and size (in bytes). There is room in the label for about
15 locations, but the LVM tools currently use 3: a single data area plus up to two metadata
areas.

2. Metadata Contents

77

The volume group metadata contains:

• Information about how and when it was created

• Information about the volume group:

The volume group information contains:

• Name and unique id

• A version number which is incremented whenever the metadata gets updated

• Any properties: Read/Write? Resizeable?

• Any administrative limit on the number of physical volumes and logical volumes it may con-
tain

• The extent size (in units of sectors which are defined as 512 bytes)

• An unordered list of physical volumes making up the volume group, each with:

• Its UUID, used to determine the block device containing it

• Any properties, such as whether the physical volume is allocatable

• The offset to the start of the first extent within the physical volume (in sectors)

• The number of extents

• An unordered list of logical volumes. each consisting of

• An ordered list of logical volume segments. For each segment the metadata includes a
mapping applied to an ordered list of physical volume segments or logical volume seg-
ments

3. Sample Metadata
The following shows an example of LVM volume group metadata for a volume group called
myvg.

Generated by LVM2: Tue Jan 30 16:28:15 2007

contents = "Text Format Volume Group"
version = 1

description = "Created *before* executing 'lvextend -L+5G /dev/myvg/mylv /dev/sdc'"

creation_host = "tng3-1" # Linux tng3-1 2.6.18-8.el5 #1 SMP Fri Jan 26 14:15:21 EST 2007 i686
creation_time = 1170196095 # Tue Jan 30 16:28:15 2007

myvg {
id = "0zd3UT-wbYT-lDHq-lMPs-EjoE-0o18-wL28X4"
seqno = 3
status = ["RESIZEABLE", "READ", "WRITE"]

3. Sample Metadata

78

extent_size = 8192 # 4 Megabytes
max_lv = 0
max_pv = 0

physical_volumes {

pv0 {
id = "ZBW5qW-dXF2-0bGw-ZCad-2RlV-phwu-1c1RFt"
device = "/dev/sda" # Hint only

status = ["ALLOCATABLE"]
dev_size = 35964301 # 17.1491 Gigabytes
pe_start = 384
pe_count = 4390 # 17.1484 Gigabytes

}

pv1 {
id = "ZHEZJW-MR64-D3QM-Rv7V-Hxsa-zU24-wztY19"
device = "/dev/sdb" # Hint only

status = ["ALLOCATABLE"]
dev_size = 35964301 # 17.1491 Gigabytes
pe_start = 384
pe_count = 4390 # 17.1484 Gigabytes

}

pv2 {
id = "wCoG4p-55Ui-9tbp-VTEA-jO6s-RAVx-UREW0G"
device = "/dev/sdc" # Hint only

status = ["ALLOCATABLE"]
dev_size = 35964301 # 17.1491 Gigabytes
pe_start = 384
pe_count = 4390 # 17.1484 Gigabytes

}

pv3 {
id = "hGlUwi-zsBg-39FF-do88-pHxY-8XA2-9WKIiA"
device = "/dev/sdd" # Hint only

status = ["ALLOCATABLE"]
dev_size = 35964301 # 17.1491 Gigabytes
pe_start = 384
pe_count = 4390 # 17.1484 Gigabytes

}
}
logical_volumes {

mylv {
id = "GhUYSF-qVM3-rzQo-a6D2-o0aV-LQet-Ur9OF9"
status = ["READ", "WRITE", "VISIBLE"]
segment_count = 2

segment1 {
start_extent = 0
extent_count = 1280 # 5 Gigabytes

type = "striped"
stripe_count = 1 # linear

stripes = [
"pv0", 0

]
}
segment2 {

start_extent = 1280
extent_count = 1280 # 5 Gigabytes

3. Sample Metadata

79

type = "striped"
stripe_count = 1 # linear

stripes = [
"pv1", 0

]
}

}
}

}

3. Sample Metadata

80

Index
A
activating logical volumes

individual nodes, 39
activating volume groups, 25

individual nodes, 26
local node only, 26

administrative procedures, 15
allocation

policy, 22
preventing, 21

archive file, 16, 26

B
backup

file, 16
metadata, 16, 26

backup file, 26
block device

scanning, 20

C
cache file

building, 24
cluster environment, 3, 15
CLVM

definition, 3
clvmd daemon, 3
command line units, 18
configuration examples, 51
creating

logical volume, 28
logical volume, example, 51
LVM volumes in a cluster, 15
physical volumes, 19
striped logical volume, example, 52
volume groups, 22

creating LVM volumes
overview, 15

D
data relocation, online, 39
deactivating volume groups, 25

exclusive on one node, 26
local node only, 26

device numbers

major, 32
minor, 32
persistent, 32

device path names, 18
device scan filters, 38
device size, maximum, 23
device special file directory, 23
display

sorting output, 48
displaying

logical volumes, 33, 45
physical volumes, 21, 42
volume groups, 23, 44

E
extent

allocation, 22
definition, 8, 22

F
failed devices

displaying, 59
file system

growing on a logical volume, 16
filters, 38

G
growing file system

logical volume, 16

H
help display, 19

I
initializing

partitions, 20
physical volumes, 20

Insufficient Free Extents message, 65

L
linear logical volume

converting to mirrored, 32
creation, 28
definition, 8

logging, 16
logical volume

administration, general, 28
changing parameters, 33
creation, 28

81

creation example, 51
definition, 1, 8
displaying, 33, 40, 45
exclusive access, 39
extending, 34
growing, 34
linear, 28
local access, 39
lvs display arguments, 45
mirrored, 30
reducing, 36
removing, 33
renaming, 33
resizing, 32
shrinking, 36
snapshot, 37
striped, 30

lvchange command, 33
lvconvert command, 32
lvcreate command, 28
lvdisplay command, 34
lvextend command, 34
LVM

architecture overview, 2
clustered, 3
components, 2, 6
custom report format, 40
directory structure, 23
help, 19
history, 2
label, 6
logging, 16
logical volume administration, 28
physical volume administration, 19
physical volume, definition, 6
volume group, definition, 8

LVM1, 2
LVM2, 2
lvmdiskscan command, 20
lvreduce command, 32, 36
lvremove command, 33
lvrename command, 33
lvs command, 40, 45

display arguments, 45
lvscan command, 34

M
man page display, 19
metadata

backup, 16, 26
recovery, 63

mirrored logical volume
converting to linear, 32
creation, 30
definition, 12
failure recovery, 60
reconfiguration, 32

O
online data relocation, 39

P
partition type, setting, 19
partitions

multiple, 7
path names, 18
persistent device numbers, 32
physical extent

preventing allocation, 21
physical volume

adding to a volume group, 23
administration, general, 19
creating, 19
definition, 6
display, 42
displaying, 21, 40
illustration, 6
initializing, 20
layout, 6
pvs display arguments, 42
recovery, 64
removing, 22
removing from volume group, 24
removing lost volume, 64
resizing, 22

pvdisplay command, 21
pvmove command, 39
pvremove command, 22
pvresize command, 22
pvs command, 40

display arguments, 42
pvscan command, 21

R
removing

disk from a logical volume, 56
logical volume, 33
physical volumes, 22

82

renaming
logical volume, 33
volume group, 27

report format, LVM devices, 40
resizing

logical volume, 32
physical volume, 22

S
scanning

block devices, 20
scanning devices, filters, 38
snapshot logical volume

creation, 37
snapshot volume

definition, 13
striped logical volume

creation, 30
creation example, 52
definition, 11
extending, 35
growing, 35

T
troubleshooting, 59

U
units, command line, 18

V
verbose output, 18
vgcfbackup command, 27
vgcfrestore command, 27
vgchange command, 25
vgcreate command, 22
vgdisplay command, 23
vgexport command, 27
vgextend command, 23
vgimport command, 27
vgmerge command, 26
vgmknodes command, 28
vgreduce command, 24
vgrename command, 27
vgs command, 40

display arguments, 44
vgscan command, 24
vgsplit command, 26
volume group

activating, 25

administration, general, 22
changing parameters, 25
combining, 26
creating, 22
deactivating, 25
definition, 8
displaying, 23, 40, 44
extending, 23
growing, 23
merging, 26
moving between systems, 27
reducing, 24
removing, 26
renaming, 27
shrinking, 24
splitting, 26

example procedure, 53
vgs display arguments, 44

83

	LVM Administrator's Guide
	Table of Contents
	Introduction
	1. About This Guide
	2. Audience
	3. Software Versions
	4. Related Documentation
	5. Document Conventions

	Chapter 1. The LVM Logical Volume Manager
	1. Logical Volumes
	2. LVM Architecture Overview
	3. Running LVM in a Cluster
	4. Document Overview

	Chapter 2. LVM Components
	1. Physical Volumes
	1.1. LVM Physical Volume Layout
	1.2. Multiple Partitions on a Disk

	2. Volume Groups
	3. LVM Logical Volumes
	3.1. Linear Volumes
	3.2. Striped Logical Volumes
	3.3. Mirrored Logical Volumes
	3.4. Snapshot Volumes

	Chapter 3. LVM Administration Overview
	1. Creating LVM Volumes in a Cluster
	2. Logical Volume Creation Overview
	3. Growing a File System on a Logical Volume
	4. Logical Volume Backup
	5. Logging

	Chapter 4. LVM Administration with CLI Commands
	1. Using CLI Commands
	2. Physical Volume Administration
	2.1. Creating Physical Volumes
	2.1.1. Setting the Partition Type
	2.1.2. Initializing Physical Volumes
	2.1.3. Scanning for Block Devices

	2.2. Displaying Physical Volumes
	2.3. Preventing Allocation on a Physical Volume
	2.4. Resizing a Physical Volume
	2.5. Removing Physical Volumes

	3. Volume Group Administration
	3.1. Creating Volume Groups
	3.2. Adding Physical Volumes to a Volume Group
	3.3. Displaying Volume Groups
	3.4. Scanning Disks for Volume Groups to Build the Cache File
	3.5. Removing Physical Volumes from a Volume Group
	3.6. Changing the Parameters of a Volume Group
	3.7. Activating and Deactivating Volume Groups
	3.8. Removing Volume Groups
	3.9. Splitting a Volume Group
	3.10. Combining Volume Groups
	3.11. Backing Up Volume Group Metadata
	3.12. Renaming a Volume Group
	3.13. Moving a Volume Group to Another System
	3.14. Recreating a Volume Group Directory

	4. Logical Volume Administration
	4.1. Creating Logical Volumes
	4.1.1. Creating Linear Volumes
	4.1.2. Creating Striped Volumes
	4.1.3. Creating Mirrored Volumes
	4.1.4. Changing Mirrored Volume Configuration

	4.2. Persistent Device Numbers
	4.3. Resizing Logical Volumes
	4.4. Changing the Parameters of a Logical Volume Group
	4.5. Renaming Logical Volumes
	4.6. Removing Logical Volumes
	4.7. Displaying Logical Volumes
	4.8. Growing Logical Volumes
	4.9. Extending a Striped Volume
	4.10. Shrinking Logical Volumes

	5. Creating Snapshot Volumes
	6. Controlling LVM Device Scans with Filters
	7. Online Data Relocation
	8. Activating Logical Volumes on Individual Nodes in a Cluster
	9. Customized Reporting for LVM
	9.1. Format Control
	9.2. Object Selection
	9.3. Sorting LVM Reports
	9.4. Specifying Units

	Chapter 5. LVM Configuration Examples
	1. Creating an LVM Logical Volume on Three Disks
	1.1. Creating the Physical Volumes
	1.2. Creating the Volume Group
	1.3. Creating the Logical Volume
	1.4. Creating the File System

	2. Creating a Striped Logical Volume
	2.1. Creating the Physical Volumes
	2.2. Creating the Volume Group
	2.3. Creating the Logical Volume
	2.4. Creating the File System

	3. Splitting a Volume Group
	3.1. Determining Free Space
	3.2. Moving the Data
	3.3. Splitting the Volume Group
	3.4. Creating the New Logical Volume
	3.5. Making a File System and Mounting the New Logical Volume
	3.6. Activating and Mounting the Original Logical Volume

	4. Removing a Disk from a Logical Volume
	4.1. Moving Extents to Existing Physical Volumes
	4.2. Moving Extents to a New Disk
	4.2.1. Creating the New Physical Volume
	4.2.2. Adding the New Physical Volume to the Volume Group
	4.2.3. Moving the Data
	4.2.4. Removing the Old Physical Volume from the Volume Group

	Chapter 6. LVM Troubleshooting
	1. Troubleshooting Diagnostics
	2. Displaying Information on Failed Devices
	3. Recovering from LVM Mirror Failure
	4. Recovering Physical Volume Metadata
	5. Replacing a Missing Physical Volume
	6. Removing Lost Physical Volumes from a Volume Group
	7. Insufficient Free Extents for a Logical Volume

	Chapter 7. LVM Administration with the LVM GUI
	Appendix A. The Device Mapper
	Appendix B. The LVM Configuration Files
	1. The LVM Configuration Files
	2. Sample lvm.conf File

	Appendix C. LVM Object Tags
	1. Adding and Removing Object Tags
	2. Host Tags
	3. Controlling Activation with Tags

	Appendix D. LVM Volume Group Metadata
	1. The Physical Volume Label
	2. Metadata Contents
	3. Sample Metadata

	Index

